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interference ratios under a narrowband assumption utilizing
cumulants 1n conjunction with spectral estimation of the
signal subspace to perform the blind separation 1s disclosed.
The BSS technique utilizes a higher-order statistical method,
specifically fourth-order cumulants, with the generalized
cigen analysis of a matrix-pencil to blindly separate a linear
mixture of unknown, statistically independent, stationary
narrowband signals at a low signal-to-noise plus interference
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and/or temporally correlated Gaussian noise. The disclosed
BSS technique separates low-SNR co-channel sources for
observations using an arbitrary un-calibrated sensor array.
The disclosed BSS technique forms a separation matrix with
hybrid matrix-pencil adaptive array weights that minimize
the mean squared errors due to both interference emitters
and Gaussian noise. The hybrid weights maximize the
signal-to interference-plus noise ratio.

28 Claims, 12 Drawing Sheets

905

-  y(t)

Array
Output Data .
x(t)

Estimate Spatial
4th-order Cumulant or
Correlation Matrix Pair
(C,(0),C (7)) or

(Rx (1-'1 )rRx(rz))

902

Coe;=A;C e 0r

Matrix Pencil EVD

903 904

Normalize
SFCMP

Eigenvectors
Wj =Tj Ej

906

Estimate
Steering Vectors

Vj =C0ej/ | COEj“

Labeled in result as
SFCM-EigVec or
R1,R2-EigVec



US 6,931,362 B2
Page 2

OTHER PUBLICAITONS

Belouchrani, A., K. Abed—Meraim, J.F. Cardoso, and E.
Moulines, “Blind Source Separation Techniques Using Sec-

ond—Order Statistics,” IEEE Transactions on Signal Process-
ing; vol. 45, No. 2; Feb. 1997; pp. 434-444.*

Biglieri, E., J. Proakis, and S. Shamai, “Fading Channels:
Information—Theoretic and Communications Aspects,”
IEEE Transactions on Information Theory; vol. 44, No. 6;
Oct. 1998; pp. 2619-2691.%

Cardoso, J.F. , “Blind Signal Separation: Statistical Prin-
ciples,” Proceedings of the IEEE; vol. 9, No. 10, Oct. 199§;
pp. 2009-2025.*

Cardoso, J.F. and B. Hvam Laheld, “Equivariant Adaptive
Source Separation,” IEEE Transactions on Signal Process-
ing; vol. 44, No. 12; Dec. 1996; pp. 3017-3030.*
Castedo, L. and A .R. Figueiras—Vidal, “An Adaptive Beam-
forming Technique Based on Cyclostationary Signal Prop-

erties,” IEEE Transactions on Signal Processing; vol. 43,
No. 7; Jul. 1995, pp. 1637-1650.*

Chang C., Z. Ding, S.F. Yau, and FH.Y. Chan, “A Matrix—
Pencil Approach to Blind Separation of Non—White Sources
in White Noise,” IEEE Transactions on Signal Processing;
vol. 48, 1ssue 3; Mar. 2000; pp. 2485-2488.*

Choi, S. and A. Cichocki, “Blind Separation of Non—sta-
tionary and Temporally Correlated Sources from Noisy
Mixtures,” Neural Networks for Signal Processing X, 2000.
Proceedings of the 2000 IEEE Signal Processing Society
Workshop, vol. 1, Dec. 2000, pp.*

Ding, Z. and T. Nguyen, “Stationary Points of Kurtosis
Maximization Algorithm for Blind Signal Separation and
Antenna Beamforming”; IEEE Transactions on Signal Pro-
cessing; vol. 48, No. 6; Jun. 2000; pp. 1587-1596.%
Dishman, J.F., “Blind Source Separation Using a Spatial
Fourth—Order Cumulant MatrixPencil”; Ph.D. Dissertation,
College of Engineering, Florida Atlantic Umversity, Boca
Raton; Dec. 2001; pp 1-200.7

Dogan, M.C. and J.M. Mendel, “Applications of Cumulants
to Array Processing—Part I: Aperture Extension and Array
Calibration”; IEEE Transactions on Signal Processing; vol.
43, No. 5; May 1995; pp. 1200-1216.*

Gabriel, W.F., “Adaptive Processing Array Systems”; Pro-
ceedings of the IEEE; vol. 80, No. 1; Jan. 1992; pp.
152-162.*

Godard, D.N., “Self—-recovering Equalization and Carrier

Tracking in Two—dimensional Data Communication Sys-
tems”; IEEE Transactions on Communications; vol.

COMM2S8; Nov. 1980; pp. 1867-1875.%

Kohno, R., “Spatial and Temporal Communication Theory
Using Adaptive Antenna Array”; IEEE Personal Communi-
cation; vol. 5, No. 1; Feb. 1998; pp. 28-35.*

Krim, H. and M. Viberg, “ITwo Decades of Array Signal
Processing Research”; IEEE Signal Processing Magazine;
Jul. 1996; pp. 67-94.%*

Nikias, C.L. and J.M. Mendel, “Signal Processing with
Higher—Order Spectra”; IEEE Signal Processing Magazine;
vol. 10, No. 3; Jul. 1993; pp. 10-37.%

Roy, R., A. Paulraj, T. Kailath, “Direction—of Arrival Esti-
mation by Subspace Rotation Methods”; Proc. ICASSPS86;
Apr. 1986; pp. 2495-2498.*

Schmidt, R.O., “Multiple Emitter Location and Signal
Parameter Estimation”; IEEE Transactions on Antennas and

Propagation; vol. AP-34, No. 3; Mar. 1986; pp. 276—-280.*

Tong, L., G. Xu, and T. Kailath, “Blind Identification and
Equalization Based on SecondOrder Statistics: A Time—Do-

main Approach,” IEEE Transactions on Information Theory,
vol. 40, No. 2, Mar. 1994, pp. 340-349.*

Van Veen, B.D. and K.M. Buckley, “Beamforming: A Ver-
satile Approach to Spatial Filtering”; IEEE ASSP Magazine;
Apr. 1988; pp. 4-24.

Chen, Y; Lin, Y; “Fourth—Order Cumulant Matrices for DOA
Estimation”; IEE Proceedings Radar, Sonar and Navigation;
vol. 141, 1ssue 3; Jun. 1994; pp 144-148.*

Liang, J; Ding, Z ;A Simple Cumulant Based Approach for
Multiuser Channel Identification”; IEEE International Sym-

posium on Circuits and Systems 2002; vol. 3; May 2002; pp
659—-662.*

Liang, J; Ding, Z ;*Higher Order Statistical Approach for
Channel Estimation Using Matrix Pencils”; IEEE Interna-
tional Conference on Communications 2002; vol. 1; Apr.
28May 2, 2002; pp 11-15.%

Anderson, P; Ingram, M; “The Performance of the Least
Mean Squares Algorithm Combined with Spatial Smooth-

ing”’; IEEE Transactions on Signal Processing; vol. 45, 1ssue
4; Apr. 1997; pp 1005-1012.%

* cited by examiner



US 6,931,362 B2

Sheet 1 of 12

Aug. 16, 2005

U.S. Patent

(DA

UOI}BJ3UDD)

xXujew uonesedsas

uonpended
10}oe4 Uo|3ezi|ewIoN

uoneuIw.193aq
san|eAud bl punisiq

JO JaquINN

uopeujwialag AAR)diRInk
oT

T J4NSId

| ¥4
uonje|najed Asuaiyl
19MO0d uoneledas

61

uoneIRUIAD)
10)09/A uopesedas

uoRejna|e) J03daAuabi]
Juapuadapu] Aldeaul
¢l

uoleuIwIalaqg
anjeAuab|y ajul4

0197-UON

UONELWNS3
DU XIIEW

€T

(SjUdWIB|3 JO Aelly)

1

(3)X

19AI909Y

00T

3)s



US 6,931,362 B2

Sheet 2 of 12

Aug. 16, 2005

U.S. Patent

—~— () 'x

cc

¢ 4dN2DId

1055320.d |eubis JONID3Y

_|_||:||||_.|||_

9

10SS370.1d ( tvz‘lA/

ssg Ny,

pue (1) ;.IIA

92
b4
10SS320.4 (1) x “A 4

leubis ‘9z

Aeliy (3) H;.‘||A_/
‘9t

A N §
(2420 s=Czn s

G\n.ua mga 0

bz

ca
(2)'s
_N\\



U.S. Patent Aug. 16, 2005 Sheet 3 of 12 US 6,931,362 B2

FIGURE 3

a@Qo



U.S. Patent Aug. 16, 2005 Sheet 4 of 12 US 6,931,362 B2

FIGURE 4




US 6,931,362 B2

Sheet 5 of 12

Aug. 16, 2005

U.S. Patent

uonejnajed

M
Xew uojjeledas

G J™INOI

(Ju

. - A
(3)x e X102 buixi




US 6,931,362 B2

Sheet 6 of 12

Aug. 16, 2005

U.S. Patent

(2) A

uonejndjed
A M7
XLjew uopesedas

H
= Xujepn uoneledas

~
3+
s
S
o
X

O J4dNOI4

uone|nd|en

M
Xi13eW uoneledss

uM
xi1.je uoneledoas

(Nu

OF aT Xie

A\
T_I
W buixiig (2)4



US 6,931,362 B2

Sheet 7 of 12

Aug. 16, 2005

U.S. Patent

£9

9

(3)x

gjeq J0suas

£ JAdNDI

(Ax M=Q)A
uogesedas wJioad

L

M XL3e uoneiledas apiacld

0=
0437 0} Xapu] anjeAauablg punsIqg 0%

99

iU ‘anjeauabi
Puasiq yoez jo AydNdpIngg

pue Yy ‘sanjeaudabiy ajuly
PUNSIF JO PquINp aY) auiwialxg

14",

(2Y) d 1IPuRd xujew ueinwng J3paQ _.Ezom leneds
3] 104 sanjeauablg ajiul4 042Z-UON JO 19S U] auiwl2Q

ﬁnNPn .Hunu
sbe AejaQ

(2¢*"1) pue (0’0°0) sben
WV XUIBW JUe[nWng JapJ0
yunod fepeds ajewnsy

0S I



US 6,931,362 B2

Sheet 8 of 12

Aug. 16, 2005

U.S. Patent

8

¢8

08

u._mw_..?_” — qg

S10109A
uoneledas w0

98

A=ty anjeausbig 10)
162 Afg s10303AU6T
juspuadapur Apesur] U sejnaed

8 4dNOI

T+A=)

Xapuf anjeAausb|3

PURSIQ JUBWBIDU]

M

4

‘xulel uoneledas

0} (S)10323A
uoneledas puaddy

[<l
janjeauably
pajeadoy

1 {4

uoneledsas w.iog

Jo}ped uopez|jewlon
ajejnoe)

ity onfeausdiy
._o.ﬂﬂw._._o__umScmm_m
Uy aje|najed




6 JdDId

US 6,931,362 B2

2aAD13-2Y'TY 1f2% 1 /'2%= A

10 29ADIF-WD4S S10303A Bulssals

= Se }|NsaJ ui pajagen 2)eul))S3
=
= 906
Z
S HU —.L." _.; _.UNPN___.&“ _..Qﬂ._.ﬁ
S10329AUdDI3 10fa*~fy=1305
dWO4S Y11
0 SZI1RUWLION dA3 [19U3d XUlenW
S
@\
< $06 206
Yy
=
<
(DA
506 106

U.S. Patent

((C2)*w'(*2)"y)
10 ((2)*2'(0) D)

Jied Xljep ucneRlo)
10 jueinwin) J13pJo-Uity
lengeds ajewnsy

(3)x
ejeq indino
ARlly



US 6,931,362 B2

Sheet 10 of 12

Aug. 16, 2005

U.S. Patent

(VA

S00T

00T

OT JdNOI1d

1¥2°5 11 /F2°%0="a
5J0303A Dupaals
jewisy

fattyhy=aly
10fatyly=la 9
QAZ I1PUSd XHIgW

((°2)y‘(*2)u)
10 {((2)D(0)2)

Jied XlJlel uoile94.10)
JO jueinwingd 3pJ0-Ulp
lenneds ajewns3

‘Askfalsiph = m AR AU N (“u) xujep
m..ouw_m\, XLl UORE(2J107 uopea.410D | Z00T

uoneJledas IS(ON+22UdJ91133U] leneds

(ISWIW) 31eWns3 ajew}s3

wnwndo wio4
00T LO0T

HM

AW 1001

uonesedss



U.S. Patent Aug. 16, 2005 Sheet 11 of 12 US 6,931,362 B2

o
~N
)
A .
o D
= S/
n S O
% EE i
o oY
Z S LU
oy Y
5 D
N§E§ O
“alo w0
zu-lzlu | H
g5 5o L
=0 o <
| oen '
k.
Qe
QR & S o Y e
(ap) UNIS obesaA
YD guw
w gsp*lﬂ
2703
o 55
CU W -
SR RT R R —
el LA
b J‘ Ty
JHTIALLS
/ 2
.r =
0 4 Z i
) i 1
101V 010 e
% [/ 2
® 7} o 5 LL]
ANV AR R
5 . o5 D
> ¥ 1 ' O
,/J i / < —
J A .
|V
Sbl i

D OO0 00O 0O O O

=i (N M < DD ™
i ¥ y ¥y 0 1

(gp) usSI |enpisay abelaay



U.S. Patent Aug. 16, 2005 Sheet 12 of 12

True MMSE

O R1,R2 EigVec
® R1,R2 MMSE

O SFCM EigVec
@ SFCM Hybrid

W T
5\ \EEEN

8| | NS
2L LN
{ERINNUAAD

(9P) UNIS abesaAy

O L vt ey

A
myy/an
ye/nn
A
SN
VI

.
o

15 20

5
Source Input SNR (dB)

FIGURE 12a

10

0

-5

-10

-15

(gp) uSI abeloAy

US 6,931,362 B2

>
)
x O
;N
£ W
3 O
5 D
a0
freed
L



US 6,931,362 B2

1

SYSTEM AND METHOD FOR HYBRID
MINIMUM MEAN SQUARED ERROR
MATRIX-PENCIL SEPARATION WEIGHTS
FOR BLIND SOURCE SEPARATION

CROSS-REFERENCE TO RELATED
APPLICATION

The present application 1s related to and co-pending with
commonly-assigned U.S. patent application Ser. No. 10/360,
631 entitled “Blind Source Separation Utilizing A Spatial
Fourth Order Cumulant Matrix Pencil”, filed on 10 Feb,
2003, the disclosure of which 1s hereby incorporated herein
by reference.

The present application 1s related to and co-pending with
commonly-assigned U.S. patent application Ser. No. 10/400,
486 entitled “Method And System For Wavelorm Indepen-
dent Covert Communications”, filed on 28 Mar. 2003, the
disclosure of which 1s hereby incorporated herein by refer-
ence.

The present application 1s co-pending with and claims
benefit of U.S. Provisional Patent Application Ser. No.
60/458,038 entitled “Cooperative SIGINT for Covert Com-
munication and Location Provisional”, filed on 28 Mar.
2003, the entirety of which 1s hereby incorporated herein by
reference.

GOVERNMENT LICENSE RIGHTS

The U.S. government has a paid-up license 1n this inven-
fion and the right 1n limited circumstances to require the
patent owner to license others on reasonable terms as
provided for by the terms of Contract No. NROOO0-02-C-

0389 awarded by the National Reconnaissance Office.

BACKGROUND

The present mvention 1s generally related to separating
individual source signals from a mixture of source signals,
and more specifically related to blind source separation.

A classic problem 1n signal processing, often referred to
as blind source separation (“BSS”), involves recovering
individual source signals from a composite signal compris-
ing a mixture of those individual signals. An example 1s the
familiar “cocktail party” effect, wherein a person at a party
1s able to separate a single voice from the combination of all
voices 1n the room. The separation 1s referred to as “blind”
because 1t 1s often performed with limited information about
the signals and the sources of the signals.

Blind source separation 1s particularly applicable to cel-
lular and personal wireless communications technologies,
wherein many frequency bands have become cluttered with
numerous electromagnetic emitters, often co-existing in the
same spectrum. The problem of co-channel emitters is
expected to only worsen 1n years to come with the devel-
opment of low power, unlicensed wireless technologies such
as Bluetooth® and other personal areca networks. These
developments have resulted in the use of multiple sensors
and array signal processing techniques to perform spectral
monitoring. Such techniques enable the exploitation of
spatial 1nformation to separate co-channel emitters for
detection, classification, and identification. Additionally,
many signals designed for a low probability of detection
(LPD) or low probability of intercept (LPI) may use ambient
background electromagnetic radiation and known
co-channel emitters as a means of concealment. Construct-
ing single sensor receiver systems with the required sensi-
tivity to such emitters 1s generally prohibitive. Thus, many
applications utilize BSS and sensor arrays.
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As described 1n “Blind Source Separation Utilizing A
Spatial Fourth Order Cumulant Matrix Pencil” referenced
above, a first order matrix pencil BSS method using a
smoothed spatial fourth-order cumulant matrix definition
was developed to avoid impractical restrictions on the sensor
array characteristics and/or noise environment. The
approach therein described exploits the fact that the fourth-
order cumulants are 1sensitive to either spatial or temporal
correlation 1n Gaussian sensor noise since the higher-order
cumulants of Gaussian random processes are zero. The
method advantageously does not sacrifice any degrees of
freedom to estimate a Gaussian noise subspace, making it
capable of using all the degrees of freedom for separating as
many sources as there are sensors 1n the array. In order to
estimate the adaptive complex sensor weights for separating
the multiple sources, a spatial fourth-order cummulant
matrix pair 1s formed for two different sets of time lags
between the observations from the different sensors.

A general eigenvalue decomposition of the smoothed
Spatial Fourth Order Cumulant Matrix (“SFOCM?”) pencil is
used to find the adaptive separation weight vectors. Since the
ogeneralized eigenvectors are orthogonal to all but one of the
steering vectors, the adaptive weights are formed from
normalized eigenvectors. These weights maintain gain on a
particular source while minimizing the output power due to
the other intervening sources. However, the normalized
eigenvector weights do not reduce the output power due to
additive Gaussian noise at the sensors. Accordingly, an
improved blind source separation technique is desired.

Thus embodiments of the disclosed subject matter are
extensions and counter parts to the SFOCMP approach,
which minimize the output power of the interferers and the
output power of the Gaussian sensor noise.

In one embodiment of the present invention, a method for
separating a plurality of signals provided by a respective

plurality of sources and received by an array comprising a
plurality of elements, mcludes generating a separation
matrix as a function of time differences between receipt of
the plurality of signals by the plurality of elements, a spatial
fourth order cumulant matrix pencil or a pair of ,”¢ order
correlation matrices, a spatial correlation matrix and steering
vectors of said plurality of signals. The method also includes
multiplying the separation matrix by a matrix representation
of the plurality of signals.

In another embodiment of the present invention, a system
for separating a plurality of signals provided by a respective
plurality of sources includes a receiver for receiving the
plurality of signals and for providing received signals. The
system also includes a signal processor for receiving the
received signals, generating a separation matrix, and multi-
plymng the separation matrix by a matrix representation of
the received signals. The separation matrix 1s a function of
time differences between receipt of the plurality of signals
by the receiver, a function of a spatial fourth order cumulant
matrix pencil or a pair of 2”¢ order correlation matrices, a
spatial correlation matrix and steering vectors of said plu-
rality of signals.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 1s a functional block diagram of a system for
performing blind source separation utilizing a spatial fourth
order cumulant matrix pencil in accordance with an embodi-
ment of the present mnvention;

FIG. 2 1s an 1llustration of signal source, array elements,
and a processor for performing array signal processing and
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BSS processing 1n accordance with an embodiment of the
present invention;

FIG. 3 1s an 1illustration of a MIMO blind channel esti-
mation scenario showing five unknown sources having
distinct radiating patterns and five sensors having distinct
receiving patterns.

FIG. 4 1s a graphical illustration of time delays between
sensors and sources.

FIG. 5 1s an illustration depicting blind source separation
(BSS) showing an input signal mixed with noise provided to
the separation process.

FIG. 6 1s an 1llustration depicting repeating the separation
process for a single repeated eigenvalue.

FIG. 7 1s a flow diagram of a process for performing blind
source separation using the spatial fourth-order cumulant
matrix-pencil 1n accordance with an embodiment of the
present mvention.

FIG. 8 1s a continuation of the flow diagram of FIG. 7.

FIG. 9 1s an embodiment of a Blind Source Separation
system with normalized eigenvectors (adaptive weights).

FIG. 10 1s an embodiment of a Blind Source Separation
system with Optimum MMSE Separation vectors (hybrid
welghts).

FIG. 11a 1s an output ISR vs received SNR performance

ograph comparing adaptive weights and with hybrid weights
with 1sotropic white noise.

FIG. 115 1s an output ISR vs received SNR performance
ograph comparing adaptive weights and with hybrid weights
with 1sotropic white noise.

FIG. 12a 1s an output ISR vs received SNR performance
ograph comparing adaptive weights and with hybrid weights
with non-1sotropic spatially and temporally correlated Gaus-
slan noise.

FIG. 12b 1s an output ISR vs received SNR performance
ograph comparing adaptive weights and with hybrid weights
with non-1sotropic spatially and temporally correlated Gaus-
slan noise.

DETAILED DESCRIPTION

A technique for performing blind source separation (BSS)
in accordance with the present invention utilizes cumulants
in conjunction with spectral estimation of the signal sub-
space to perform the blind separation of statistically inde-
pendent signals with low signal-to-noise ratios under a
narrowband assumption. This BSS technique makes use of
the generalized eigen analysis of a matrix-pencil defined on
two similar spatial fourth-order cumulant matrices. The
herein described BSS technique utilizes a higher-order sta-
tistical method, specifically fourth-order cumulants, with the
ogeneralized eigen analysis of a matrix-pencil to blindly
secparate a linear mixture of unknown, statistically
independent, stationary narrowband signals at a low signal-
to-noise ratio having the capability to separate signals 1n
spatially and/or temporally correlated Gaussian noise. This
BSS technique provides a method to blindly separate signals
in situations where no second-order technique has been
found to perform the blind separation, for example, at a low
signal-to-noise ratio when the number of sources equals the
number of sensors.

To describe this BSS technique, a definition of a spatial
fourth-order cumulant matrix suited to blind source separa-
tion with non-equal gain and/or directional sensors and a
definition of a spatial fourth-order cumulant matrix-pencil
using temporal information are provided. The herein
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4

description also utilizes the concept of separation power
efficiency (SPE) as a measure of the BSS technique’s
performance, and applies the concept of wide sense equiva-
lence between matrix-pencils to the field of matrix algebra.
As an overview, the BSS technique described herein
utilizes cumulants 1n conjunction with a spectral estimation
technique of the signal subspace to perform blind source
separation 1n the presence of spatially and/or temporally
correlated noise at low signal-to-noise ratios. Prior to deriv-
ing a separation algorithm based on cumulants, a narrow-
band array model 1s developed, all assumptions are stated,
four performance measures are defined, and the relevant
cumulant properties that allow for the spatial mixing matrix
information to be extracted from a spatial cumulant matrix
are presented. A novel spatial cumulant matrix definition 1s
then developed and its” relevant matrix properties are
derived in order to determine which mathematical methods
are valid for extracting the spatial information about the
mixing matrix. Additionally, two alternative definitions for
the spatial fourth-order cumulant matrix are described and
relevant properties are derived. Furthermore, the definitions,
properties, and use of a generalized eigen analysis of a
matrix-pencil defined on two similar spatial fourth-order
cumulant matrices are explored and their applicability to
solving the blind source separation problem 1s investigated.
A process 1s described for performing the blind source
separation based on the signal subspace technique using
matrix-pencils. In the process the concept of wide sense
equivalence between matrix-pencils 1s developed and then
used to show that the generalized eigenvalues of a matrix-
pencil defined on two similar spatial fourth-order cumulant
matrices are equal to the ratio of fourth-order cumulant of
each source at a set of time lags (0, 0, 0) to the fourth-order
cumulant at the set of lags, (t,, T, T5). Thus the concept of
a normalized fourth-order auto-cumulant function 1s intro-
duced. To further aid in understanding this BSS technique,
notation used herein 1s presented below.
M=Number of Sources
N=Number of Sensors
P,=Normalized Power of the i source signal
m (t)=Continous Time Unit Power Modulated Signal from
the i source
s{t)=Continous Time Signal from the i source=VP;m (1)
r{t)=Delayed version of s(t)
x(t)=Continous Time Signal from the i”* sensor.
x(t)=The vector of sensor outputs.
h,(t)=Continous Time Impulse Response of the channel
between the j* source and the i”* sensor
n/t)=Additive Noise Process at the i”* sensor.
o, ”=Variance of the Noise Process at the i”* sensor.
T;;=Propogation Delay from the i”* source to the i”* sensor

Aty ; = "Ditterential Time Delay”™. The difference in

propogation delay from the output of the j™

source to the k' sensor output and from the

!I‘h

output of the j"source to the Sensor output.

=Ty~ Thj

%j.s“Reference Time Delay” from the j** source to some
arbitrary array reference point 1n the vicinity of the array.
Nominally this can be the average propogation delay to all
N sensors from the j** source.

At =“Relative Time Delay”. The difference in propagation
time from the j source to the i”” sensor and the array
refence point.
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t=11me Difference 1n Correlatlon of Statlonary Processes
v,=Complex Weight for the j* " source at the i”* sensor for the
"Narrow Band Model. The 1] element of the “Mixing
Matrix”. The i”* element of the j** steering vector.
v.=The i “Steering Vector” for the Narrow Band Model.
V=The Narrow Band Model “Mixing Matrix”.

w;=Complex Weight for the i .2y

source at the 1 sensor for
the Narrow Band Case. The 17 element of the “Separating
Matrix”. The i”* element of the j** sensor weight vector.

W sop=1h0e hybrid MMSE weight vector estimate for the i*
SQUrce.

W=The “Separation Matrix”.
a.,;=Real valued gain(attenuation) of the channel from the 1* i
Source output to the fk sensor output.

BWNE%[ |=Noise Equivalent Bandwidth

BW “@H=(Coherence bandw1dth of the Channel between the
i " source and the i sensor.

yAt)=The i output from the separation process. It is a noisy
estimate of the of the j** delayed source signal, r{t).

y(t)=The vector of output signals from the separatlon Pro-
CESS.

p,=The j* " signal loss term. Element of the “loss” matrl}i

S =The separation process output signal power of the i
source signal.

[ =The residual interference power in the i
process outpudt.

N,=The noise power 1n the i separation process output.

C;=The “Interference-to-Signal Ratio” for the i”" separation
process output.

ISR, ,=The “Average Interference-to-Signal Ratio”.

ISR ___=The “Maximum Interference-to-Signal Ratio”.

g;=The “Power Eﬁcwney” of a blind source separation
algorithm for the j** source.

Eag=1he “Average Power Efficiency” of a blind source
separation algorithm.

g . =The “Minimum Power Efficiency” of a blind source
separation algorithm.

C.*(ty, T, T3)=NxN “Spatial Fourth-Order Cumulant
Matrix 17 with delay lags t,, T, Ts.

C.*(ty, Ty, T3)=NxN “Spatial Fourth-Order Cumulant
Matrix 2”7 with delay lags T, T,, Ts.

C.*(ty, T,, T5)=NxN “Spatial Fourth-Order Cumulant
Matrix 3”7 with delay lags t,, T, Ts.

Cum| |=Cumulant Operator.

crj-4(’cl, T,, T5)=The fourth-order cumulant of the j** source
signal with delay lags t,, T,, T5. Also referred to as the

fourth-order auto-cumulant.

V=The “Modified Mixing Matrix”. Defined as the Had-
amard Product VO V O V.

C 4 (T3, T, t,)=The normalized fourth-order cumulant of the
] source signal with delay lags t,, T,, T5. Also referred to
as the normalized fourth-order auto-cumulant.

C,*(t, Ts, T3)=MxM Diagonal “Fourth-Order Signal Cumu-
lant Matrix” with delay lags t,, T, Ts.

C( )=“Column Space” of a matrix.

N ( )=The “Rigth Null Space” of a matrix.

N )=The “Left Null Space” of a matrix.

[.=NxN Identity Matrix.

tr( )=The “Trace” of a matrix.

sp( )=The “Span” of a sub-space.

p( )=The “Rank” of a matrix.
T =Vector notation for the set of delay lags, {T;, T5, T5}.

P_(}, ?)EThe “Spatial Fourth-Order Cumulant Matrix-
Pencil” using a pair of Spatial Fourth-Order Cumulant

Matrix 1°s.

P' (A, ?)EThe “Spatial Fourth-Order Cumulant Matrix-
Pencil” using a pair of Spatial Fourth-Order Cumulant
Matrix 2’s.
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P" (A, ?)EThe “Spatial Fourth-Order Cumulant Matrix-
Pencil” using a pair of Spatial Fourth-Order Cumulant
Matrix 3’s.

P (A, ?)EThe “Fourth-Order Signal Cumulant Matrix-

Pencil” using a pair of Diagonal Fourth-Order Signal
Cumulant Matrices.

R _=The estimated zero-lag Spatlal correlation matrix.

K _The interference-plus-noise correlation matrix estimate
"for the i** source.

MA, B)=The “Spectrum” of the pencil defined on the
matrices A and B. The set of generalized eigenvalues.
MA, B)=The “Finite Spectrum” of the pencil defined on the
matrices A and B. The set of non-zero finite generalized

cigenvalues.

A;=The “i”* Eigenvalue” of the pencil defined on a pair of
spatial fouth-order cumulant matrices. There are M such
cigenvalues, counting multiplicities. A; takes on one of the
K values of y,.

1, =The “k™ Distinct Eigenvalue” of the pencil defined on a
pair of spatial fouth-order cumulant matrices. There are K
such values that the set of A’s takes on.

gk_The set of indeices, {j}, where A, =l
¢;=The Nx1 “1*" Eigenvector” of the pencﬂ defined on a pair
of spatial fouth-order cumulant matrices associated with

the elgenvalue A
~ H

= The “Normalization Factor” for the j* eigenvector

Vi
1

|51

Yi= |
J

geom

Mg

alg__

=The “Geometric” Multiplicity of an Eigenvalue.
N, “*=The “Algebraic” Multiplicity of an Eigenvalue.
n,=The “Multiplicity” of an Eigenvalue when m,8°“"=n,“’¢
*=FKither conjugation or convolution, as appropriate from
the context of the use.

FIG. 1 1s a functional block diagram of a system 100 for
performing blind source separation utilizing a spatial fourth
order cumulant matrix pencil in accordance with an embodi-
ment of the present invention. System 100 comprises a
receiver 11 and a signal processor 12. The recerver 11
receives signal s(t), which is indicative of a plurality of
signals provided by a respective plurality of sources and
provides signal x(t) to the signal processor 12. The receiver
11 may be any appropriate receive configured to receive the
signal s(t). For example, the signal s(t) may be an acoustic
signal, an optical signal, a seismic signal, an electromagnetic
signal, or a combination thereof, and the receiver 11 may be
configured to receive the respective type of signal. In one
embodiment, the receiver 11 1s configured as an array having
a plurality of elements. The signal s(t) is received and
appropriately processed (e.g., time delayed and multiplexed)
and provided to the signal processor 14 in the form of signal
x(1).

The signal processor 12 may be any appropriate processor
configured to process the signal x(t), such a general purpose
computer, a laptop computer, a special purpose computer, a
hardware implemented processor, or a combination thereof.
The signal x(t) may be in any appropriate format, such as an
optical signal, and electromagnetic signal, a digital signal,
and analog signal, or a combination thereof. As will be
explained 1n more detail below, the signal processor 12
comprises a matrix pencil estimation portion 13, a non-zero
finite eigenvalue determination portion 14, a number of
distinct eigenvalues determination portion 15, a multiplicity
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determination portion 16, a linearly independent eigenvector
calculation portion 17, a normalization factor calculation 18,

a separation vector generation portion 19, a separation
matrl}i generatmn portion 20, and an optlonal separation
power elliciency calculation portion 21. The matrix pencil
estimation portion 13 1s configured to estimate the spatial
fourth order cumulant matrix pencil as a function of time
differences of the arrival of the signal s(t) at the elements of
the receiver 11. The non-zero finite eigenvalue determina-
tion portion 14 1s configured to determine the non-zero finite
ceigenvalues for the spatial fourth order cumulant matrix
pencil. The number of distinct eigenvalues determination
portion 15 1s configured to determine the number of eigen-
values that are distinct. The multiplicity determination por-
tion 16 1s configured to determine the multiplicity of each of
the distinct finite eigenvalues. The linearly independent
eigenvector calculation portion 17 1s configured to calculate
linearly independent eigenvectors for each of the distinct
finite eigenvalues. The normalization factor portion 18 is
configured to calculate, for each eigenvalue having a mul-
tiplicity equal to one, a normalization factor and to generate
a respective separation vector as a function of the normal-
ization factor and an eigenvector corresponding to the
eigenvalue having a multiplicity equal to one. The separa-
tion vector generation portion 19 1s configured to generate,
for each repeated eigenvalue, a separation vector as a
function of an eigenvector corresponding to the repeated
cigenvalue. The separation matrix generation portion 20 1s
coniigured to generate the separation matrix as a function of
the separation vectors. The optlonal separation power elli-
ciency calculation portion 21 1s configured to calculate the
eficiency of the separation process 1n accordance with the
following formula: C;=S,/P,, wherem C; 1s indicative of the
separation power eflclency for the j* source of the plurality
of sources, S 1s indicative of a power of a separated signal
from the j* source and P; 15 indicative of a normalized
power of a signal from the i”* source.

FIG. 2 1s an 1llustration of signal source 24, array elements
26, and a processor 22 for performing array signal process-
ing and BSS processing 1n accordance with an embodiment
of the present invention. Array signal processing 1S a spe-
clalization within signal processing concerned with the
processing of a set of signals generated by an array of
sensors at distinct spatial locations sampling propagating
wavellelds, such as electromagnetic, seismic, acoustic,
optical, mechanical, thermal, or a combination thereof, for
example. As shown in FIG. 2, the array samples the j”

wavefield, r(t, ?) oenerated by the ™

locations {?1, ?2, ..., Z nf (only one location, z;, shown
in FIG. 2) with a set of sensors 26, which generate signals
x{t) indicative of the wavefield at each location, z;. The
signals x(t) may be any appropriate type of signal capable
of being processed by the processor 22. Examples of appro-
priated types of signals x(t) include electrical signals, acous-
tic signals, optical signals, mechanical signals, thermal
signals, or a combination thereof. The signal x(t) provided
by the i”* sensor, 26, comprises the sum of the wavefields

from all sources 24 at each sensor’s location, each weighted

SOUrce 24- at

with response of the sensor in the signal’s r(t, ?L) direction
of arrival, plus an additive noise term, n(t). As described in
more detail herein, the processor 22 processes the signals
x(t) for enhancing sets of sources signals’ individual signal-
to-interference-plus-noise ratios by suppressing interfering
source signals at different spatial locations without knowl-
edge of the source signal characteristics, the channels
between the sources and the array elements, the sources’
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locations, or array geometry via a blind source separation
(BSS) technique in accordance with the present invention.

A blind source separation technique in accordance with
the present invention 1s described herein by defining under-
lying assumptions made about the source signals and noise
sources. Different multiple input multiple output (MIMO)
array channel models are described resulting in a narrow-
band model, which 1s utilized in the BSS technique in
accordance with present 1nvention.

Blind source separation (BSS) is applicable to many areas
of array signal processing that require the enhancement and
characterization of an unknown set of source signals gen-
crated by a set of sensors that are each a linear mixture of the
original signals. These 1nclude, for example, signal
intelligence, spectral monitoring, jamming suppression, and
interference rejection, location, and recognition. Typically,
the mixing transformation, source signal characteristics, and
sensor array manifold are unknown. Thus, blind source
separation may be viewed as a multiple-input, multiple-
output (MIMO) blind channel estimation problem.

FIG. 3 1s an illustration of a MIMO blind channel esti-
mation scenario showing five unknown sources, s, S», Sz, Sy,
S, having distinct radiating patterns and five sensors, X, X,
X5, X4, X5, having distinct receiving patterns. The sources, s,,
S, S3, S4, S5, may provide and the sensors, X, X,, X3, X4, Xs,
may correspondingly receive, acoustic energy, electromag-
netic energy, optic energy, mechanical energy, thermal
energy, or a combination thereof. As shown 1n FIG. 3, the
five unknown sources, s;, S,, S5, S4, S5, with distinct radiating
patterns are generating a set of waveflelds that are impinging
on an array of five sensors, X,, X,, Xi, X,, X5, with an
unknown array manifold. Each source, s, S,, S5, S4, Ss,
provides a respective source signal. A BSS separation tech-
nique 1n accordance with the present invention, jointly
extracts the set of source signals from an array of sensors
(e.g., X, X5, X3, Xy, Xs,) Sampling the aggregate (composite)
of the source signals’ propagating wavelields at distinct
spatial locations without knowledge of the signal character-
istics or knowledge of the array’s sensitivity as a function of
direction of arrival or geometry.

In order to develop a blind source separation technique
suitable for separating narrowband signals given a set of
outputs from an array of sensors with a relatively small
spatial expanse and assess 1ts performance, 1t 1s advanta-
geous to develop a multiple-input multiple-output (MIMO)
narrowband channel model for the array, state assumptions
made, state the problem mathematically, and develop a set of
measures to evaluate the technique.

As such, a narrowband MIMO channel model i1s devel-
oped by starting with the most general convolutional MIMO
channel model and then placing restrictions on the signal
bandwidth and array size to simplify the problem, resulting
in the narrowband model as utilized herein. Signal and noise
assumptions are then presented and the blind source sepa-
ration technique 1n accordance with the present mnvention 1s
described mathematically and graphically. Two performance
measures to be used 1n assessing the performance are then
described 1ncluding the novel concept of separation power
efficiency (SPE).

Four multiple-input multiple-output (MIMO) channel
models applicable to the blind source separation problem are
described herein. These models are the general channel
model, the non-dispersive direct path only channel model,
the general finite impulse response (GFIR) channel model,
and the narrowband channel model. The BSS technique 1n
accordance with the present invention 1s then described
utilizing the narrowband channel model.
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The General Channel Model: In the most general case, the
output of each element 1s modeled as a summation of the M
source signals each convolved with the 1impulse response of
the channel between the output of the source and output of
the sensor plus the additive Gaussian noise referenced to the
sensors input. That 1s,

L (1)
X0 = ) vij(0)es;(0) +ni(0)

/=1

where * denotes convolution. The impulse response, v,(1),
of the channel between the output of the j** source and the
i sensor output may be time varying and account for such
phenomena as multi-path propagation, dispersion, sensor
fime-varying response, source motion, sensor motion, etc.
This can be written 1n matrix form as the general multiple
input multiple output (MIMO) channel model

oy (0] )

x(1) =[x (1) x2(1) -

- vy () vipp @) 1 [ s1@) 1 [ rae)

I
*
+

v (E) e vy (D) | sy (D) | [ ry(E)

= V() =s(r) + n(r)

where [ T' denotes transposition.

The Non-Dispersive, Direct Path Only Channel Model:
When there 1s no multi-path, motion, or dispersion, the
channel 1impulse response can be modeled by a delay and
attenuation. That 1s,

sz(f)=azj‘5(f_rfj)

(3)

where o, 1s the cascaded attenuation/gain from the output ot
i” source to the i** sensor output and T,; 1s the propagation
time (delay) from the output of j** source to the output of the
i sensor. Under this model, when the sifting property of the
delta function is employed, the output of the i”* sensor

(ignoring the noise) becomes

4)

Il
[

x;(1) = v () %5 ;(1)

J

s

EEijS(I — Tij) :!ESJ,'(I)

‘Tl.
[

s

;s —Tij)

‘Tl.
[

At this poimnt a “differential” delay 1s defined as the
difference in propagation time from the output of the j*
source to the output of the k” sensor and to the output of the
I sensor.

ATy g =TTy

(5)

This differential time delay defines the time difference of
arrival between two sensors for a given signal and 1s a
measure of the spatial expanse of the array of sensors.
Additionally, to facilitate situations when the minimum
propagation delay from the j** source to the sensors is much
orcater than the maximum differential propagation delay,
that 1s
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m_jn (T.ej)l = H}?X |AT.{,k,J‘.| )
i »

the propagation time T, 1s decomposed 1nto two
components, a “reference” delay, which 1s defined as the
average propagation time from the output of the source to
the output of the sensors and denoted as ’E}., and a “relative”
delay, which 1s defined as the difference 1n propagation time
between the reference time delay and the actual propagation
time and denoted as At;. The propagation time from the i
source to the i”* sensor can then be expressed as

T, =T A+AT,,.

(6)

FIG. 4 1s a graphical 1llustration of time delays between
sensors and sources. The decomposition of the propagation
time as depicted 1n FIG. 4 includes five sources, labeled s,
S., . . , Ss, with associated reference delays T, T, . T
which are generating a set of wavefields that illuminate a set
of five sensors, labeled x,, X, . . . , X5, and the relative time
delay, At,,, 1s shown for the first source, s,, and the third
sensor, X5 . Using the above definitions, the differential time
delay can be reformulated as follows:

.., Ts,

AT i =T — Ty (7)
= (?J' + ﬁTu) — (?J' + ﬁ’ﬂu)

= ﬁTU—ATkj

Both the differential and relative time delays are utilized in
the formulation of the narrowband and the general finite
impulse response models.

The General Finite Impulse Response (GFIR) Channel
Model: The general model 1s often simplified by modeling
the channel between the output of the j** source and the i””
sensor output, v, (t), as a FIR filter or tapped delay line. As
with the general model, the GFIR Model may be time
varying and can account for such phenomena as multi-path
propagation, dispersion, sensor time-varying response, Sys-
tem motion, etc. The FIR filter used to model v,(t) must be
long enough to account for the multi-path delay spread of the
channel as well as the relative time delay, At;, with a
“reference” delay, t;, accounted for by defining a delayed
version of the source signal as 1t’s input. That 1s the mput to
the set of FIR filters used to model the channels between the
output of the j** source and array of sensors is

(8)

The FIR filter or tapped delay line model 1s valid for a
fading channel when the coherence bandwidth of such a
channel 1s much less than the noise equivalent bandwidth of
the source signal, that 1s BWNEQ[SJ-(‘[)]CBWQ—COH , where the
coherence bandwidth 1s defined as the reciprocal of the
multi-path delay spread. In this situation the multi-path
components 1n the channel separated by a delay of at least
27t/BW i s {1)] are resolvable and the fading phenomenon
1s referred to as being “frequency selective”. Thus the
channel impulse response can be represented as

r{f)=s;{t-T,).

Lij—1 (9)

vif) = Y V08 = 2al | BWigg s (D))
{=0

where the time varying complex-valued channel gain of the
I”* component can be represented as
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) 10
0 = o nes o

The length of the model, L;, 1s the number of resolvable
multi-path components which 1s

Ly=[BWye s,V BW, O] (11)

where | | denotes the ceiling function. For the GFIR channel
model, the length of the FIR filter has to not only accom-
modate the multi-path delay spread but also the relative time

delay, At That 1s equation (11) becomes
L;= |B WNEq[Sj(f)]'[ (lﬁrfjl/zﬂ)*‘(l/ﬁ W'.ijGH)]-l- (12)

In practice, the length of all the FIR filters are set to a
common value, L., which 1s defined as

I = max (LU)
b J

(13)

When the coherence bandwidth is greater than the noise
equivalent bandwidth of the source signal, that 1s

BWyg,[s; (0] < BWS9Y,

the fading 1s referred to as “frequency non-selective” and the

fading model reduces to a single time varying complex
weight. That 1s L;=1, and thus

vij () = v (14)

»{0)
— EEEH?}(I)E“E@U (%)

which begins to look like a time-varying narrowband model.
However, for the above simplification to a single complex
welght to hold 1n array signal processing, the source signal
must have a noise equivalent bandwidth much less then the
center frequency and the array of sensors must have a
relatively small spatial expanse, that 1s

BWNE-:;[S}(I)] <& W ; (15)

maXx |ATy;| <« 7/ BWyg[s;(1)]. (16)

The Narrowband Channel Model: A measure of the spec-
tral support of a signal 1s the noise equivalent bandwidth,
denoted as BW,,. | |. By the duality principle of time and
frequency, the inverse noise equivalent bandwidth can be
used as a measure of the temporal support of the signal, in
other words 1t 1s can be used as an indication of the
decorrelation time of the signal. When the signal noise
equivalent bandwidth 1s much less then the center frequency,
that 1s

BWye s (0)]<<w, (17)

where ; 1s the center frequency of the i source, then the
propagation delay, or relative propagation delay, can be
modeled as a phase shift. In this situation, when there 1s no
dispersion or multi-path, the channel model 1s referred to as
the narrowband model.

However, since the phase shift 1s modulo 2 with respect
to the center frequency, the requirement that the bandwidth
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be much less than the center frequency 1s itself insufficient
in order for the time delay to be modeled as a phase shift and
preserve the waveform, 1.e. negligible inter-symbol interfer-
ence (ISI) is induced in a digital communications signal.
Therefore, for the narrowband model to hold, the array of

sensors must also have a relatively small spatial expanse.
That 1s

max|Aty; ;<< 2n/BWyg, [s ; ()] (13)

Lk

Since Aty ;= ATy — ATy, requiring

max |At;| << 7/BWyg,|s (1] (19)

is a sufficient condition to guarantee (18) holds, via the
tfriangle 1nequality. When the Narrowband conditions
defined in (17) and (19) hold, the relative time delay is
negligible 1n comparison to the decorrelation time of the
signal and thus

s {t-T~AT, )=s (1) (20)
which says the waveform is preserved (within a phase shift).
Thus, the relative time delay can be modeled as a phase shaft,

'V‘I'J'(IJDIESJ'(I) = &’u(‘i(f—ﬂj)ﬂcé’j(ﬂ (21)

= @ijs (I —7ij)

= @;;$

i j(f—?j—ﬁﬂ'j)

— Ju AT —
= @€ I USJ'(I—TJ')

= EH;jiE_j¢iij(f—Tj) = ijf’j(f)

where r(t)=s(t-T,), ¢,=mAT;, and a complex weight, v, is
defined as
v =0e 7Y, (22)

This complex weight together with the other N-1 weights
associated with the i signal form the j** steering vector.

The output of the i”” sensor is then

M (24)
Z vijr (D) + (1)

J=1

x; ()

As done for the general m j” model, this can be

re-formulated 1n matrix form for the vector of sensor outputs
as

X(0) = Do (D) %200 - av@] (25)
vir o oviy || n@ ] [ @)
_ L]
Vi o Yy AL (D | [ an (@)
)] [ @)
=i vml| +|+] ¢
(D] |y (D)
= V(1) + n(1)

Due to conservation of energy, the total average signal
power from the j** source illuminating the array can never
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exceed P;. Smce the signal-to-noise ratio 1s established at the
input of the sensor, in the total array gain can be viewed as
being normalized. Thus for the narrowband model, the inner
product of the j** column of the mixing matrix V is,

(26)

where [ 1 denotes the Hermitian transpose.

Signal and Noise Assumptions: The following assump-
tions are made about the source signals and noise vector.
These assumptions are made to allow the use of the fourth-
order cumulant and to ensure a sufficient number of degrees
of freedom for the separation technique to exploit. Assump-
tions Al and A2 ensure that the fourth-order cumulant of the
source signals exist. The zero-mean assumption 1s not nec-
essary for the use of cumulants but 1s assumed since prac-
tical propagating electro-magnetic signals have a zero-mean.
Assumptions A3 and A4 are particularly useful to the use of
cumulants for the BSS problem. Without them, the noise
sources would need to be treated as a signal source thus
requiring additional degrees of freedom 1n the array. Note
that the noise sources are not assumed to be temporally or
spatially white. This 1s contrast to assumptions made 1n other
second order techniques. The final assumption on the num-
ber of source signals helps to ensure that the there are
enough degrees of freedom to perform the separation using
the matrix-pencil approach.

The first assumption (Al): The M source signals illumi-
nating the array are statistically independent non-Gaussian
stationary random processes. Assumption Al 1s represented
mathematically as follows.

M (27)
frl:rb"' oy, (}"'1, Fa oo, FM) — l_[ frj(rj)
j=1

The source signals are assumed stationary to order four over
the estimation period of the spatial fourth-order cumulant
matrix.

The second assumption (A2): The M source signals
illuminating the array have zero mean with power P; and a
non-zero fourth-order moment. Assumption A2 1s repre-
sented mathematically as follows.

Elm(t)]=0 (28)
Elr()FEBym () =B m(1)]=0 (29)
Elmy(ym; ()1 (30)
Elry(t)r;* (1L Bm ()VBm,* (1) ]=PElm,(tym;* (1)]=P, (31)
ELri(tyr* Or 0= 1P Em m;* Om (m=(0)] (32)
Elmy(ym;=(Oym,{tym;*(1)}<0. (33)

The third assumption (A3): The set of source signals
(processes) and set of noise processes are statistically inde-
pendent. Assumption A3 is represented mathematically as
follows.
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(34)

frl=r2=---=rM=”1=”2=--- ’H’N(r]" Fz, ,FM,HISHZS BH’N):

M
A oy a1 I VRO
j=1

The fourth assumption (A4): The noise processes are
stationary zero-mean (Gaussian random processes. They are
not assumed to be spatially or temporally independent.
Assumption A3 1s mathematically represented as follows.

0(O~N(, 62) (35)
n(t)=[n,(t), n(t), . . . , HN(t)]T"‘N(U: K.) (36)
1 (37)

—HTKEIH

fﬂl,ﬂz,... ,HN(nla nz:r L HN) —

&
(2m)V/2|detK,, |

The fifth assumption (A5): The number of sources is less
than or equal to the number of sensors, 1.6. M=N.

FIG. 5 1s a functional block diagram of an apparatus for
performing blind source separation (BSS) of M statistically
independent narrowband source signals given a set of out-
puts from an array of sensors with a relatively small spatial
expanse and with an arbitrary and unknown array geometry,
in accordance with an embodiment of the present invention.
The BSS technique as described herein determines a sepa-
ration matrix W that will diagonalize the mixing matrix V.
This 1nvolves finding a NxM separation matrix W, with
complex clements w,,

(38)

that will diagonalize the mixing matrix, V. That 1s, a sepa-
ration matrix W is desired such that the product W7V results
in a MxM diagonal “loss” matrix with elements p;.

o 0 - 0] (39)
0 p2 '
wiy =|
0
0 - 0 pu |

When the separation matrix, W, 1s applied to the vector of
sensor outputs, the result 1s

y(1) = Wi x(0) = WAV FQ©) + n(0)} (40)

= WHVro) + W n(o)

_}91 O 0 __ ]
. r(1)
0 p2 . "
— _ 0 + W H(f)
P (E)

i () T Oou | M

P (1) ]
— : +WHH(I)

Pmram () |

and the source signals are separated. For mathematical

completeness note that the vector r(t)eC", the vectors x(1),
n(t)eC", and the matrices V, WeC"*. If the loss matrix is
the 1dentity matrix, the separation process has captured all of
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the signal energy illuminating the array thus guaranteeing
that the separated output signal has reached the maximum
achievable signal to interference plus noise ratio.

As developed previously 1n the narrowband model, the

output of each sensor 1s a weighted linear mixture of the
independent source signals plus noise.

M (41)
x;(1) = Z Virg(r) + (1)

{=1

Applying the separation matrix to the vector of sensor

outputs separates the sources.
y(1) = WHx(1) (42)

= W VD) + n(D)

= WV + WHa)

The i element of the separation process output vector, yAD),
is an estimate of the j** source signal, r(t) and 1s the inner
product of the j** column of the separation matrix and the
vector of sensor outputs.

yi(0) = wj x(2) (43)
N
= Wi x; (1)
i=1
Substituting equation (41) into equation (43) yields
N M (44)
yilt) = Z Wf-{z vigri (1) + H:‘(f)}
{=1

=1

N

M N
= E Wi ) varD+ ) whm(D)
=1

i—1 (=1

N N M N
= Z Wi Vil (1) + S: S: Wi vigri(f) + Z Wi (1)
i=1 i=1 i=1 i=1
I+

where 1t 15 clear there are three distinct terms corresponding,
to the desired signal, the residual interference, and the output
noise. Of particular interest in evaluating the performance of
communications and signal intelligence systems 1s the
second-order moment of each of these terms. The second-
order moment of the first term 1s the desired signal output
power and 1s defined as

| N 2 (45)
S;=E Z Wi Vil (1)
| 1:]' _
TN NN #* ]
= Fl« Z W Vi (1) #{Z wﬁjvkjrj(r)}
U= ) Uil _
N N
= > > Wiy wgElri(ors ()]
i=1 k=1
Applying assumptions Al and A2,
Elr ()7 *()]=P, (46)

10

15

20

25

30

35

40

45

50

55

60

65

16

and thus equation (45) becomes

N (47)

which can be represented using vector notation as
o Ho

The second-order moment of the second term in (44) is
the residual interference power and 1s given by

o (49)

[l
x>
L
M=
ks
el
-
%
=~
3
oty &
-
4]
E“‘s’
=~

However, by assumption Al the signals are statistically

independent and therefore
E[rOr,*(6)]=0, for m=l. (50)

Additionally, applying the stationarity of assumption Al and
assumption A2,

Elr(Or () ]=P; (51)

Using (50) and substituting equation (51) into equation (49),
the residual interference power reduces to

M N N (52)

which can be represented using vector notation as

M (33)
IJ,' = Z PJW?WVEWJ.
|

(=1
{+

The second-order moment of the third term in (44) is the
output noise power and 1s given by

| N 2 (54)
N;,=E Z Wi (1)
L E:l .
" AN " N Yy
= E| Z w:f}ﬂf(f)} Z Wit (1) ¢
=1 k=1 )
NN
= > > wWiEln(on (0w
=1 k=1
which can be represented using vector notation as
N=w/ Eln({tin" (1) ]w,. (55)
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By definition and assumption A4, the expectation of the
outer product of the noise vector 1s the noise covariance
matrix,

E[n(On"()=K,, (56)

and thus the output noise power 1S

(57)

To evaluate the effectiveness of a blind source separation
technique, a measure of the quality of the separation 1is
utilized. As previously described, the blind source separation
technique as described herein determines a separation matrix
W that will diagonalize the mixing matrix V. Two measures
to assess the quality of a blind source separation algorithm
are developed herein. Performance of the BSS technique
may be measured 1n terms of residual interference and in
terms of the efficiency of the algorithm in “capturing” all
available signal power illuminating the array of sensors.

One measure of the quality of separation 1s the amount of
residual interference found in a signal output after the
separation matrix has been applied. Specifically, the power
of the residual interference relative to the desired signal in
the estimate of the desired source averaged over all sources
as well as the peak or maximum residual mterference-to-
signal ratio to assess the separation technique in terms of
suppressing co-channel interference are proposed for use.
This measure 1s of significance because, 1f the separation
matrix does not perfectly diagonalize the mixing matrix, the
off diagonal terms of the resultant matrix will permit residual
interference 1n the signal outputs.

In most communications applications, the common mea-
sure of the amount of interference 1s the signal-to-
interference ratio, which 1s the ratio of the desired signal
power to the combined power of all interfering signals.
However, as the goal of the blind source separation 1s to
completely eliminate all interference, this ratio could
become extremely large. As a result, the Interference-to-
Signal ratio (ISR), which quantifies the residual power of the
interference that a blind source separation algorithm or
technique fails to suppress relative to a particular desired
signal power, 1s proposed. The better an algorithm 1s the
smaller this ratio will become.

The ISR of a particular desired signal 1s defined as

I
é’j:S—J_-
)

(53)

Substituting (53) and (48) into (58), the ISR for a particular
signal 1s

(99)
M
Z Pgwf va W,
=1

r= B
T P

This value 1s also known as the rejection rate.

The overall quality of separation of a blind source sepa-
ration technique may be measured by looking at the mean
value of the individual source signal ISR’s, C., over all ;.

Thus the primary measure to be used to evaluate the per-
formance of a blind source separation algorithm 1n terms of
residual interference will be the average ISR given by
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M (60)

5o

=1

ISR, =

The secondary measure 1n terms of residual interference
will be the peak or maximum ISR, which is defined as

ISRnax = max|[{;].
J

(61)

This secondary measure ensures that all source signals are
citectively separated with an ISR no worst than ISR .

A second measure of the quality of separation 1s utilized
to determine the efficiency of the source separation matrix in
terms of its ability to make use of the available signal power.
A BSS technique 1s considered more efficient if the output
signal-to-1nterference-plus-noise ratio 1s maximized, thus
having greater sensitivity in terms of being able to capture
smaller signals, than a BSS technique not maximizing the
output signal-to-interference-plus-noise ratio.

The efficiency of a blind source separation algorithm 1n
using all of a source’s signal power 1lluminating the array of
sensors 15 yet another important measure of its quality of
separation. This measure determines how much of the
available signal power from a particular source 1s wasted or
lost 1n the separation process. This loss results 1n a lower
signal-to-noise-plus-interference ratio then would otherwise
be theoretically achievable and thus a loss 1n system sensi-
tivity. The Separation Power Efficiency (SPE) for a particu-
lar separation process output relative to the desired source
signal’s available normalized power 1s defined as

5

P

(62)

&j

o
J

where C; is indicative of the separation power efficiency for
the j** source of the plurality of sources, S; 1s indicative of
a power of a separated signal from the ;** source, and P; 1s
indicative of a normalize power of a signal from the
source.

Substituting equation (48) in for the separation process
output power reveals that the particular SPE

(63)

depends only on the steering vector for the j** source and the
i column of the separation matrix. As with ISR, both the
average SPE and the minimum SPE, defined as

| M (64)
ga'u‘g = @Z fj
7=1
and
Emin = Hl}ﬂ[fj] (65)

respectively, will be used to evaluate the separation power
efficiency.

Note that by the definition of the illuminating source
signal power, P, that the maximum value the SPE can
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achieve 1s one. Thus the maximum achievable average SPE
1s also one. A separation algorithm that achieves an SPE of
one 15 guaranteed to have maximized the source signal
power 1n the corresponding separation process output. The
mimmum SPE provides a measure of ensuring that all
sources are successfully separated with a minimum separa-
tion power efficiency.

A BSS technique in accordance with an embodiment of
the present 1nvention utilizes cumulants, specifically spatial
fourth order cumulant matrices. To better understand the use
of cumulants 1n performing blind source separation, a cumus-
lant definition and associated properties are provided below.

The joint cumulant, also known as a semi-invariant, of
order N of the set of random variables {s,, s,, . . ., Sy} 1S
defined as the N”-order coefficient of the Taylor series
expansion about the origin of the second characteristic
function. See, for example, C. L. Nikias and A. P. Petropulu,
Higher-Order Spectra Analysis: A Non-Linear Signal Pro-
cessing Framework. (PTR Prentice-Hall, Upper Saddle
River, N.J.: 1993) and M. Rosenblatt, Stationary Sequences
and Random Fields (Birkhauser, Boston, Mass.: 1985),
which are hereby incorporated by reference 1n their entirety
as 1f presented herein. The second characteristic function 1s
defined as the natural logarithm of the characteristic
function,

Y (0, 0y ..., 0Op=ln [D (o, 0,5, ..., 0] (66)
where the characteristic function 1s defined as

D (0, Wy, . . ., y)=E[e/ (V151022 - - roNNy ] (67)
The joint N”-order cumulant is then
Cumlsy, 5o, ... , sy = (08)

O W(wy, was ..., Op)
(—J)
6&)16&02 6£UN (] ==+ =t py =0

Cumulants, unlike moments, cannot be directly estimated
from the data. See, for example, A. K. Nandi, Blind Esti-
mation Using Higher-Order Statistics (Kluwer Academic,
Dordecht, The Netherlands: 1999), which is hereby incor-
porated by reference in 1its entirety as 1f presented herein.
However, cumulants can be found through their relationship
to moments and can thus be estimated indirectly by first
estimating the required moments. The relationship of cumu-
lants to moments 1s described in M. Rosenblatt, Stationary
Sequences and Random Fields (Birkhauser, Boston, Mass.:
1985) for the N”-order joint cumulant of the set of random

variables {s,, S,, . . ., Sy as
N (Nip) p i Y (69)
A
Cﬂm[ﬂl, 52y ey SN] — % (_I)P—l (P _ 1) I+ ; 1 [ 3 l_[ Silf
p=1 . n=1 [{=1 _EEgLPr” 1.

where there are N(p) ways of partitioning the set of integers
{1,2,..., N} into p groups, each denoted as g, , ,,, such that

P (70)
ﬂg!,p,n — {Q)}

=1

p

H gipn=11,2,... , N}
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As an example, for the case N=4, the partitioning 1is
defined on the set of integers {1, 2, 3, 4} and is given in
Table 1.0 below.

TABLE 1.0

All Possible Partitions for N = 4

% N(p) Bl-1 p.p.n=1:N{p)
1 1 {1,2, 3, 4)
27 {1} {2, 3, 41 {2} {1, 3, 4}; {3} {1, 2, 4}; {4} {1, 2, 3};

11, 25 13, 45511, 37 12, 455 11, 4712, 35

3 6 Up 1251345 11 (31 12,45 115 14712, 353
125 135 11, 45 127 141 11, 35 135 14111, 25
Up 125 3514

The 4™-order joint cumulant as a function of the moments is
then
(71)

Cumlsy, 52, 53, 54] =
Els1525354] — Els11- Els25354] — E[s2] El515354] —
E[s3]- Els15254] — E[sa] - Els1s253] — Els1s2] - E[s354] —
Els153]- E[sasa] — Elsysa]- E[s2s53] + 2E[sys2] - E[s3] - Elsa] +
2ETss3]- E[s2] - Elsa] + 2E[sysa]- E[s2] - Els3] +
2E[s2s3]- Els1]- Elsa] + 2E[s2s4]- Els1]- Els3] +

2E[s354]- Els1]- Els2] = OEls1]- Els2]- Els3] - Els4]

Note that equation (71) shows that computation of the
N“”-order joint cumulant requires knowledge of all moments
up to order N.

Cumulants possess several properties that make them
attractive for use 1n the blind separation of a linear mixture
of unknown statistically independent signals in spatially
and/or temporally correlated Gaussian noise, especially at a
low signal-to-noise ratio.

One property that makes cumulants attractive for use in
blind source separation 1s that if the set of random variables
181,85, ...,85 can be divided in to two or more groups that
are statistically independent, then their N*-order joint
cumulant i1s zero. Thus, the cumulant operator 1n the blind
separation of statistically independent sources will suppress
all cross-source signal cumulant terms. In general, this 1s not
the case for higher-order moments. Another property that
makes cumulants attractive for use 1 BSS i1s that the
Cum|s,;+n,, S,+0,, . . ., Sx+0x|[=Cum(s,, s, . . ., Sy ]+Cum
[n,, n,, ..., n,]. Because in general the set of signal terms
1S1, 85, ..., S} and the set of noise terms {n,, n,, . . ., Ny}
are statistically independent from each other, the N**-order
joint cumulant of the terms of their vector sum, {s,+n,,
Ss+0ls, . . . , Sxy+0at, 1S the sum of their individual joint
cumulants. Therefore, the cross cumulants between the noise
terms and signal terms will be zero. This property 1s impor-
tant 1n guaranteeing that the spatial fourth-order cumulant
matrix can be decomposed into the sum of two matrices, one
corresponding to the signals and the other corresponding to
noise vector.

Yet another property that makes cumulants attractive for
use 1 BSS i1s that the joint cumulant of order N>2 of a
Gaussian random variable 1s zero. Because the noise vector
is a multi-variate Gaussian random process, n=(n,, n., . . .,
ny | ~N(u,, K ), its joint cumulant of order three or higher
will be zero. That is Cum|n,, n,, . . . , n,|=0. This last
property results in the spatial fourth-order cumulant matrix
not having a noise subspace and the only non-zero elements
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of the matrix are associated with and only with the source
signals. This 1s true even 1f the noise vector 1s spatially or
temporally correlated.

Finally, cumulants of order higher than two preserve
phase information that i1s lost by the use of second-order
statistics, such as correlation. For example, auto-correlation
destroys the information necessary to distinguish between
minimum phase and non-minimum phase signals. Thus, two
signals may have 1dentical second-order statistics yet have
different higher-order statistics. This property 1s of particular
interest 1n handling signals with identical auto-correlation
functions and adds additional degrees of freedom for finding
a set of time lags where a group of source signals will have
different higher-order cumulants. This property 1s particu-
larly advantageous to a BSS technique in accordance with
the present invention because a condition of identifiability of
this BSS technique 1s that all signals have a unique normal-
1zed fourth-order auto-cumulant. Note that the fourth-order
cumulant 1s used because odd order cumulants of a process
with a symmetric distribution will be zero.

Four properties of cumulants utilized in the BSS tech-
nique 1n accordance with the present invention are described
below. Proofs of these cumulant properties may be found in
C. L. Nikias and A. P. Petropulu, Higher-Order Spectra
Analysis: A Non-Linear Signal Processing Framework.
(PTR Prentice-Hall, Upper Saddle River, N.J.: 1993) and M.
Rosenblatt, Stationary Sequences and Random Fields
(Birkhauser, Boston, Mass.: 1985).

Cumulant Property 1:
The N” order joint cumulant of the set of random variables

OS], 0sSs, o . L, OaSAt 1S

Cum|aisy, 252, ... , aysSy | =

(N
: l_[ ﬂj}Cﬂm[Sl, S5, ... , Sy | where {ay, as, ... , ay}

., .i!:].

are constants.

Cumulant Property 2:

If the set of random variables {s,,s,, .. ., Sy can be divided
in to two or more groups that are statistically independent,
then their N”-order joint cumulant is zero.

Cumulant Property 3:

If the sets of random variables {s,, s, . .., s } and {n,,
n,, ..., Ny  are statistically independent, i.e. f_, (s, 85, . . .,

Sy g, g, - - - Ny )=f (S, S, . . ., Sx)f(n,, n,, ..., 0.,
then the N**-order joint cumulant of the pair-wise sum 1is

., Sy HCum|#n,,

Cum|s 474, S5+, . . ., Syt [=Cum|s,, 55, . .

Aoy o .., Al

Cumulant Property 4

If the set of random variables {n,, n,, . . ., ny} are jointly
Gaussian, then the jomnt cumulants of order N>2 are 1den-
tically zero. That is, if n=[n,, n,, . . . , 0, ]'~N(x,,, K ), then
Cum|n,, n,, . . ., n,]=0.

A BSS technique 1n accordance with the present invention
utilizes a fourth order spatial cumulant matrix. Three defi-
nitions of the spatial fourth-order cumulant matrix and
associated properties are provided below.

The spatial fourth-order cumulant matrix 1s used as a basis
for estimating a separation matrix at low signal-to-noise
rat1os and 1n the presence of spatially and temporally cor-
related noise since 1t theoretically has no noise subspace,
even 1f the noise 1s correlated. This eliminates the need to
use either degrees of freedom and/or secondary sensor data
to estimate the noise subspace, which must be removed 1n
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order for the matrix-pencil to be formed. As described
below, the absence of the noise subspace 1s a direct result of
using a higher-order cumulant, 1.e. order >2, and 1s particu-
larly advantageous to a blind source separation technique in
accordance with the present invention.

The three spatial fourth-order cumulant matrix definitions
and their properties are presented herein with consideration
of the fact that the sensors are 1n reality never omni-
directional, never have 1dentical manifolds, and that differ-
ent sets of time lags are needed to estimate a pair of spatial
fourth-order cumulant matrices to form the matrix-pencil.
These considerations are a clear distinction from previous
treatments of the spatial fourth-order cumulant matrix. See,
for example, H. H. Chiang and C. L. Nikias, “The ESPRIT
Algorithm with Higher-Order Statistics,” Proc. Workshop on
Higher-Order Spectral Analysis, Vail, Colo., June 1989, pp.
163—-168, C. L. Nikias, C. L. Nikias and A. P. Petropulu,
Higher-Order Spectra Analysis: A Non-Linear Signal Pro-
cessing Framework (PTR Prentice-Hall, Upper Saddle
River, N.J.: 1993), M. C. Dogan and J. M. Mendel, “Appli-
cations of Cumulants to Array Processing—Part I: Aperture
Extension and Array Calibration,” IEEE Trans. Signal
Processing, Vol. 43, No. 5, May 1995, pp. 1200-1216, and
N. Yuen and B. Friedlander, “Asymptotic Performance
Analysis of ESPRIT, Higher-order ESPRIT, and Virtual
ESPRIT Algorithms,” IEEE Trans. Signal Processing, Vol.
44, No. 10, October 1996, pp. 2537-2550. Understanding
the properties of the spatial fourth-order cumulant matrix
such as 1ts rank, null spaces, etc., and 1its relationship to the
mixing matrix are beneficial to developing a signal subspace
blind separation technique using fourth-order cumulants and
a matrix-pencil 1n accordance with the present imnvention.

A brief review of the spatial correlation matrix and its
properties are provided below to aid 1n understand 1ts use 1n
a BSS technique 1n accordance with the present invention.
The spatial correlation matrix of the sensor array output is
defined 1n D. H. Johnson and D. E. Dudgeon, Array Signal
Processing: Concepts and Techniques. (PTR Prentice-Hall,
Englewood Cliffs, N.J.: 1993), which is hereby incorporated

by reference 1n 1its entirety as if presented herein, as:

R, (0)=E[x()x"(1-7)]

(72)

Substituting (25) for x(t) in to equation (72) and applying
assumptions Al and A3, the spatial correlation matrix
becomes

R.(T) = (73)
E[{VrD) + n(dOHVre = 1)+ n(t = ™ = E[VrOr T 1 = 0)VH ] +
E[Vror" =D+ Eln(orf t =V + Eln(on" 1 - 1)) =
VE[r(or? (1 = DIVY + E[n(on" (1 = D] = VR (DO)VY + R, (1)
which has elements
(74)

M
[Re(De = ) vipvGElrj(0r( = 0] + Eln(0n (1 — 7))
j=1

where the subscript rc indicates the element is in the r”* row
and ¢ column. Since the signal and noise processes are
assumed to be zero mean, assumptions A2 and A4, the
spatial correlation matrix defined in equation (72) is equiva-
lent to the spatial covariance matrix, and thus the terms are
used 1nterchangeably.

In general, most second-order techniques make use of the
spatial correlation or covariance matrix only at a delay lag
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of zero, {T=0}. In such a case the spatial correlation matrix
1s Hermitian and non-negative definite. See for example D.
H. Johnson and D. E. Dudgeon, Array Signal Processing:

Canceprs and Techniques. (PTR Prentice-Hall, Englewood
Cliffs, N.J.: 1993), C. L. Nikias and A. P. Petropulu, Higher-
Order Spectra Analysis: A Non-Linear Signal Processing
Framework. (PTR Prentice-Hall, Upper Saddle River, N.J.:
1993), and A. Papoulis, Probability, Random Variables, and
Stochastic Processes. (WCB/McGraw-Hill, Boston, Mass.:
1991), for example. Further, if the sensor outputs are linearly
independent, that is E[{a’x(t)}{a’x(t)}*]>0 for any a=[a,,
o, . .., aN]'=0, then the spatial correlation matrix is
positive definite. As a consequence of the spatial correlation
matrix being non-negative definite for t=0, 1ts determinant
will be real and non-negative, and will be strictly positive if
and only 1f the sensor outputs are linearly independent.
However, 1f t=0 then the spatial covariance matrix 1s indefi-
nite and non-Hermitian.

Spatial Fourth-Order Cumulant Matrix Definition 1

The first definition of a spatial fourth-order cumulant matrix
presented takes advantage of the steering vectors having a
norm of one. This is stated mathematically in equation (26).
As will be shown, this 1s utilized to factor the spatial
fourth-order cumulant matrix into Hermitian form when the
sensors are not omni-directional with identical manifolds.
The first spatial fourth-order cumulant matrix 1s defined at
the set of time lags (T, T, T5) as

N (75)
Clr, m2,13) = ) Cumlxj (0= 1)xi(t = 72) X (X (1 = 73)]

=1

and 1s referred to as spatial fourth-order cumulant matrix 1.

The spatial fourth-order cumulant matrix 1 as defined in
(75) is in general a complex NxN matrix with the element
in the r” row and ¢ column given by

(76)

[CHr1, 72, 73], Zcﬂamx(r—mx;(r T2 (DXL (1 = 73))

i=1

where { }* denotes complex conjugation. Substituting equa-
tion (24) into (76), element rc becomes

[Ch(T1, T2, T3)] . = (77)

(M e M .
ZV’? _,(I)+FL (1) [Z Vﬂmrm(r—r3)+nﬂ(;_1-3)] _

m=1

N

E Cum

i=1 /=1 /

B

k=1

= M ]
Viehe (T —T1) + 1;(F — Tl)] [Z Vi (I — Tp) + 1 (F — Tz)]

=1

Then, by Cumulant Property 3 and assumption A3, (77)
becomes

[Chry, T2, T3)],. = (78)

[ M M M
E Vit (1) E Vi F (T —11) E Vighi(I — 72) -

A

Z Vﬂmrm(r _ T3) +

m=1

N

E Cum

=1
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-continued

N
Z Cum|n(Dn} (t — 7)) (t — 7o)t — 73)]
i=1

where the terms have been re-ordered. However, by assump-
tion A4 and Cumulant Property 4,

N (79)
> Cumln, (0 (¢ = 7t = T2 (1 = 73)] = 0
1=1
and thus (78) becomes
N M y (80)
[Cj(n , T2, T3)]. . = Z Cum Z v,ljrj(r)z Vi b, (I —T1)
=1 = k=1

A

Z Vigr (I — Tz)'z Vet mE —73)

{=1

Then, by the source signals statistical independence of
assumption Al and repeatedly applying Cumulant Property
3, equation (80) reduces to

N M

[Ch(T1, T2, T3)], =Z

i=1 J':

(81)

Cumlv,; Jr(z‘)vurj(f T1)
1

ri(t =)yt —13)"].

Using Cumulant Property 1, the complex weights may
then be pulled out in front of the cumulant operator in
equation (81) to give

N

M
S: y ViV ViV Cumlr (Or; (1 — 1)

=1 j=

(82)
[Ch(T1, T2, T3)]

il

ri(t = 7)) (1 — 73)).

Reordering the summation yields

M (83)

[Ci(Ty, T2, T3] Z“’m”q

J=1

”ME

ViiVij Cum|r; JAorit—1y)
ri(t = T)r(t — 73)).

However, since the steering vectors have a norm of 1, that
1S

N N
D= e =1
i= i=1

equation (83) reduces

M (84)
[ChHry, T2, 73)].. ZV Ve Cumlrj(D)r; (1 —71)

/=1

ri(t —m)ri(t —73)l.

From (84) it can be seen that spatial fourth-order cumus-
lant matrix 1 can be factored into Hermaitian form, as was the
case for spatial correlation matrix,
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Cx4(1:1: TE: TS)=VCF4(11: TE: TS)W (85)

where C *(t,, T,, T,) Is a MxM diagonal matrix with
clements,

[C (71, T2, T3)] ;= Cumlr j(@Ori(t = )rj(t = 7)1 (1 = 73)] (36)

4
= er(Tla To, T3).

Expanding equation (85) it is found that spatial fourth-order
cumulant matrix 1 can be written as a sum of the steering
vector outer products scaled by the mdividual source sig-
nal’s fourth-order cumulant.

M (87)
Cl(r1, 12, T3) Z J(Tl T2, T3V v i » where
J=1

C.*(ty, T,, T5) is the spatial fourth order cumulant matrix
having a first time lag, T,, a second time lag, T, and a third
time lag, T, each time lag being 1indicative of a time delay
from one of the plurality of sources to one of the plurality of
clements; M 1s indicative of a number of sources in the
plurahty of sources; ¢, *(t4,T,, T4 )is a fourth order cumulant
of a j** source signal from one of the plurahty ol sources
having delay lags Ty, To, and t5; and v, V 1s ndicative of an
outer product of a j** steering vector.

From equation (87) it is clear that spatial fourth-order
cumulant matrix 1 lies 1n the signal subspace spanned by the
set of steering vectors. Note that the spatial fourth-order
cumulant matrix does not have the noise subspace that is
present 1n the spatial correlation matrix. What was the noise
subspace 1n the spatial covariance matrix 1s now the
nullspace of the spatial fourth-order cumulant matrix. This
property will be shown to be true for the other spatial
fourth-order cumulant matrix definitions presented.

Spatial Fourth-Order Cumulant Matrix 1 Properties
Spatial fourth-order cumulant matrix 1, C_*(t,, T, T,), has
several properties, an understanding of which will facilitate
the development of a method for estimating a separation
matrix W. Establishing the spatial fourth-order cumulant
matrix 1°s matrix properties 1s a first step to the use of the
generalized eigen decomposition of the matrix-pencil
formed by a pair of spatial fourth-order cumulant matrix 1°s
at two sets of time lags. Such things as its rank and 1its
subspaces relationships to the mixing matrix’s subspaces are
advantageous 1n developing a signal subspace separation
algorithm. Particular attention i1s paid to the fact the indi-
vidual sensors are not assumed to be omni-directional with
identical directivity for each 1impinging source signal wave-
field.

Property 1: Spatial fourth-order cumulant matrix 1 1s
Hermitian if and only if ©,=t,=T and 15=0, i.e. C. (7, T, 0).

Property 2: The trace of spatial fourth-order cumulant
matrix 1 equals the sum of the signal fourth-order

cumulants, which is the trace of the diagonal matrix C_*(t,,
Ta, T3).

M (38)
r(CH(Ty, T2, T3)) = Z cr(T1, T2, T3)

_ J
s=1

= r(Clzy, T2, T3))

Property 3: The column space of spatial fourth-order
cumulant matrix 1, denoted as C(C_*(t,, T,, T3)), is spanned
by the set of steering vectors.

SP(C(Cx4(T1: Ty, T3)))=1Vis Vo, « « + 5 Viag) (89)
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Further, if the mixing matrix has full column rank, then the
set of steering vectors are linearly independent and they
form a basis for the column space of spatial fourth-order
cumulant matrix 1.

Property 4: If V has full column rank, then the rank of
spatial fourth-order cumulant matrix 1 equals the rank of the
mixing matrix. That 1s

p(V)

if p(V)=M, where p( ) denotes rank.

Property 5: The “right” nullspace of spatial fourth-order
cumulant matrix 1 and the “left” nullspace of the mixing
matrix are equal if the mixing matrix has full column rank.

P(C" (T, Tos T3))= (90)

N (C Ay, Ty, T3))=NAV) (91)

Spatial Fourth-Order Cumulant Matrix Definition 2

The second definition for a spatial fourth fourth-order cumu-
lant matrix 1s one modified from the definition described 1n
H. H. Chiang and C. L. Nikias, “The ESPRIT Algorithm

with Higher-Order Statistics,” Proc. Workshop on Higher-
Order Spectral Analysis, Vail, Colo., June 1989, pp.
163—168 and C. L. Nikias and A. P. Petropulu, Higher-Order
Spectra Analysis: A Non-Linear Signal Processing Frame-
work. (PTR Prentice-Hall, Upper Saddle River, N.J.: 1993).
These definitions are used and the set of time lags (T4, T,, T3)
are 1ncorporated to obtain spatial fourth-order cumulant
matrix 2.

C* (v, Ty T)=Cum[ {x(O)x* (1=t )x(t-15) }x 7 (t-75)] (92)

Spatial fourth-order cumulant matrix 2 1s a NxN matrix
with the element in the r* row and ¢ column

[Cf (71, 72, T3)]m = Cum|x, ()X, (f — 7)x, (1 — T2)x_( — 73)]. (93)

Substituting equation (24) for x(t) in equation (93), element
rc becomes

(M )

Z vy i (0) + 1(0)

4 /=1 J

y .
[Z Vrkf‘k(f—ﬂ)+ﬂr(f—ﬂ)] '

k=1

M
[Z Vbt — T2) + 1,1 — Tz)]

{=1

M ]
[Z Vﬂmrm(r_ T3) +Hﬂ(r_ TS)]

m=1

(94)
[Cf (71, T2, T3)]m = Cum

Following the simplification of spatial fourth-order cumu-
lant matrix 1, Cumulant Property 3 and assumption A3 are
applied to reduce equation (94).

M (95)

Z VWFJ(I)Z rkrz(r_ T1)

=1

[Cf (71, T2, r?,)]m = Cum

M

E Vﬂﬂ(f—Tg)-ZVﬂmFm(I—T’j) +
FH=

=1

Cum|[n, (D (1 — 7)1 — o) (T — 73)]
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However, by assumption A4 and Cumulant Property 4,

Cum|n, (On, (1=t )n,(1=T,)n, " (1=75) |=0 (96)
and thus (95) reduces to
[ M (97)
[Cf (1, 72, 73)| = Cum Z rj J’(I)Z Ve U= T1)
=
i

M
E Vuhf—72)- Z“’cmf'm(f T3) |-
m=1

=1

Then, by the statistical independence of the source signals of

assumption Al and repeatedly applying Cumulant Property
3, equation (97) reduces to

(938)

[C‘4 (T1, T2, T3) ZCum Vit OV (1 —71)

Vi J(I TZ)V(IJFJ(I_ T?r) ]

Using Cumulant Property 1, the complex weights may
then be pulled out 1n front of the cumulant operator in
equation (98) to give

(99)

M
[C4 (71, Tn, T3) Z ViiViiViiVei Cuml|r; Orit—1p)
=1

ri(t = m)ri(t —13)l.

X _ oy 2 '
However, v, v, *=a, .~ and equation (99) reduces

(100)

[C4 (71, T2, Tg,) Zﬁywvqu(?’um[rj(r)r (t—11)

J=1

ri(t = m)ri(t —13)].

From (100) it can be seen that spatial fourth-order cumus-
lant matrix 2 1n general can not be factored into Hermitian
form, as was the case for spatial fourth-order cumulant
matrix 1 and the spatial covariance matrix. However, it

v, =0,V (101)
1s defined, 1t can be factored in to bilinear form.
Cx4l(1:1: TE: I3)=?Cr4(11: TE: T3)W (102)

where the element in the r* row and ¢ column of the NxM
“modified” mixing matrix V 1is

[V]=V.. (103)

Expanding equation (102), it is found that spatial fourth-
order cumulant matrix 2 can be written as a sum of the outer

products of the “modified” steering vector, {,—.}_? and steering
vector scaled by the individual source signal’s fourth-order
cumulant.

(104)

M
(Tl T2, T3)=Z J(Tl T2, T3)1{;V
=1

Note that the “modified” steering vector {;}_ is the i column
of the matrix V.
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A question pertaining to spatial fourth-order cumulant
matrix 2 1s whether or not it 1s rank deficient. Following the
derivation of the rank of spatial fourth-order cumulant
matrix 1, the rank of spatial fourth-order cumulant matrix 2
will be equal to the rank of the mixing matrix if “modified”

mixing matrix, V, and the mixing matrix both have full
column rank. The mixing matrix V can be assumed to have
full column rank since this can be guaranteed by design of

the array. However, the rank of V cannot be guaranteed by
design and as of yet, 1t 1s unclear i1f guaranteeing that the
mixing matrix has full column rank 1s sufficient to guarantee
that the “modified” mixing matrix will have full column

rank. Although the *
Hadamard product

modifled” mixing matrix V is the

V=VOVQOV (105)

the rank of the mixing matrix 1s not necessarily preserved.
Sce for example, J. R. Schott, Mairix Analysis for Statistics.
(John Wiley and Sons, New York, N.Y.: 1997). At this point
it shall be assumed that the Hadamard product preserves the
rank of the mixing matrix and therefore that the mixing
matrix having full column rank 1s sufficient to guarantee that
the “modified” mixing matrix has full column rank. The
implications of the “modified” mixing matrix not having full
column rank will be clear 1n the subsequent sections.

If the “modified” mixing matrix has full column rank, by
inspection of equation (104) it is obvious that spatial fourth-
order cumulant matrix 2 lies 1n the signal subspace spanned
by the set of “modified” steering vectors. Again, the noise
subspace 1n the spatial covariance matrix 1s now a nullspace
of spatial fourth-order cumulant matrix 2. Note that in H. H.
Chiang and C. L. Nikias, “The ESPRIT Algorithm with
Higher-Order Statistics,” Proc. Workshop on Higher-Order
Spectral Analysis, Vail, Colo., June 1989, pp. 163—168 and
C. L. Nikias and A. P. Petropulu, Higher-Order Spectra
Analysis: A Non-Linear Signal Processing Framework.
(PTR Prentice-Hall, Upper Saddle River, N.J.: 1993), the
clements/sensors are omni-directional with unit gain so that
(1,;,-2=1 and as such, spatial fourth-order cumulant matrix 2
and spatial fourth-order cumulant matrix 1 would be equal
and the “modified” mixing matrix has full column rank.
However, this 1s an unrealistic assumption since in practice
sensors are never omni-directional.

Spatial Fourth-Order Cumulant Matrix 2 Properties

If the “modified” mixing matrix V has full column rank,
spatial fourth-order cumulant matrix 2 will possess many of
the same properties that spatial fourth-order cumulant matrix
1 does. The subsequent sections derive the key properties
assoclated with the development of a matrix-pencil signal
subspace separation technique with the assumption that the
“modified” mixing matrix has full column rank.

Property 1

Spatial fourth-order cumulant matrix 2 1s 1 general
non-Hermitian. It will be Hermitian if and only if ©,=t,=1
and t,=0, i.e. C.*(t, T, 0) and the sensors all have the
identical gain for a given signal.

Property 2

The trace of spatial fourth-order cumulant matrix 2 equals
the sum of the signal fourth-order cumulants scaled by the
sum of the sensor magnitudes to the fourth power.

M N

5: Jﬂfwf?r (T1, T2, 73)
=1 =1

| (106)
r(Cy (11, T2, T3)) =
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Property 3

The column space of spatial fourth-order cumulant matrix
2, denoted as C(C.* (T4, T», T3)), is spanned by the set of
“modified” steering vectors.

SP(C(C"; (Ty1, T2, Tg))) = {ﬁl, Vo, ven 'TjM} (107)

Further, if the “modified” mixing matrix has full column
rank, then the set of “modified” steering vectors are linearly
independent and they form a basis for the column space of
spatial fourth-order cumulant matrix 2.

Property 4

The rank of spatial fourth-order cumulant matrix 2 equals

the rank of the mixing matrix, if V and V have full column
rank. That 1s

ﬁ(cf (T1, T2, T3)) = p(V) (108)

if p(V)=p(V)=M, where p( ) denotes rark.

Property 5

The “right” nullspace of spatial fourth-order cumulant
matrix 2 and the “left” nullspace of the mixing matrix are

equal if the mixing matrix and “modified” mixing matrix
have full column rank.

NACY (11, T3, 13)) = Ny(V) (109)

Spatial Fourth-Order Cumulant Matrix Definition 3

The third and final definition for a spatial fourth-order
cumulant matrix incorporates the time lags (t,, T,, T5) and
results 1n the following equation.

C.* (T4, Ty, T3)=Cum[{x(O)x* (t-1)x*(t=1) jx' (t-75)] (110)

Spatial fourth-order cumulant matrix 3 1s again a NxN
matrix with the element in the r*”* row and ¢ column

[Ciy(’rl, Tn, Tg)]m = Cum|x,(Dx(t — 7 )X (1 — T)x.(r — 73)]. (111)

Substituting equation (81) for x(t) in equation (111), ele-
ment rc becomes

ey \

D vy i(0 +my (0

=1 J

y .
[Z Vrkrk(f—ﬂ)-l-ﬂr(f—ﬂ)] '

k=1

y .
[Z Vi Fi(l — 72) + 1, (1 — Tz)]

{=1

M _
[Z Vﬂmrm(r_ T3) +H’E:(I_ TS)]

m=1

(112)
[ (z1. 7. 73)| = Cum

Following the simplification of spatial fourth-order cumu-
lant matrix 2, Cumulant Property 3 and assumption A3 are
applied to reduce equation (112).
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e M (113)
[qff (71, T2, Tg)]rc = Cum Z ijrj({)z oy (t—1()
=1 k=1

M

. _
E vfﬁ!rf(r—*rz)-Zvﬂmrm(r—Tg) +
m=1

{=1

Cum|n,(Dn (1 —7))n.(t — To)n (1 — 73)]

However, by assumption A4 and Cumulant Property 4,

Cum[”r(r)nr:k ('\:L_-ljl)"‘ci't.r:+= (I_TE)”E(I_-EB)]=U (1 - 1)
and thus (95) reduces to
M y (114)
[CY (71, 2, 73)| = Cum Zﬁjf’j(f)z Vi (T —71)
B <

M

. _
E vk (I —Tp)- Z Ve P (E — T3)|.
m=1

{=1

Then, by the statistical independence of the source signals of
assumption Al and repeatedly applying Cumulant Property
3, equation (114) reduces to

(115)

[C4 (71, T2, T3) ZCum Vi i (D4 (L —T1)

J=1

73)°].

vjj-rj(r — T2Vt —

Using Cumulant Property 1, the complex weights may
then be pulled out in front of the cumulant operator in
equation (115) to give

M (116)

vwvwv VeiCumlr; (I)rj(f— T1)
=1

[C{w (71, T2, T3)

J

ri(t —mo)r(t —73)).

K _ oy 2 '
However, v,.v,*=a, ;" and equation (116) reduces

M (117)
[Cﬁlﬂ(Tl s, TS) Z JV V. CL{H’IF (I)Fj(f—Tl)

=1

ri(t —o)r(t —73)).

From (117) 1t can be seen that spatial fourth-order cumus-
lant matrix 3 1n general can not be factored into Hermitian
form, as was the case for spatial fourth-order cumulant
matrix 1 and the spatial covariance matrix. However, if the
“modified” steering vector elements are again defined as

V,=0,V,; (118)
1t can be factored 1n to bilinear form.
C_?-:4"(T]_5 TE: 13)=ff$cr4(11: TE: TS)VT (119)

where the element in the r”* row and ¢ column of the NxM

“modified” mixing matrix V 1is
[V],=V,e (1.2)

Expanding equation (119), it is found that spatial fourth-
order cumulant matrix 3 can be written as a sum of the outer
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products of the conjugate of the “modified” steering vector,

{,}_? and steering vector scaled by the individual source

signal’s fourth-order cumulant.

(120)

M
(Tl T2, T3) Z j(Tl T2, Tg-,)‘p’ V
=1

As before, 1t 1s yet to be proven if the mixing matrix V
having full column rank 1s sufficient to guarantee that the

“modified” mixing matrix V will have full column rank.
However, 1t shall be assumed that the Hadamard product
preserves the rank of the mixing matrix and therefore that
the mixing matrix having full column rank 1s sufficient to
guarantee that the “modified” mixing matrix has full column
rank.

If the “modified” mixing matrix has full column rank, by
inspection of equation (120) it is clear that spatial fourth-
order cumulant matrix 3 lies 1n the signal subspace spanned
by the set of conjugated “modified” steering vectors. Again,
like spatial fourth-order cumulant matrix 2, spatial fourth-
order cumulant matrix 3 has no noise subspace. Note that in
N. Yuen and B. Friedlander, “Asymptotic Performance
Analysis of ESPRIT, Higher-order ESPRIT, and Virtual
ESPRIT Algorithms,” IEEE Trans. Signal Processing, Vol.
44, No. 10, October 1996, pp. 2537-2550, as in H. H.
Chiang and C. L. Nikias, “The ESPRIT Algorithm with
Higher-Order Statistics,” Proc. Workshop on Higher-Order
Spectral Analysts, Vail, Colo., June 1989, pp. 163-168 and
C. L. Nikias and A. P. Petropulu, Higher-Order Spectra
Analysis: A Non-Linear Signal Processing Framework.
(PTR Prentice-Hall, Upper Saddle River, N.J.: 1993), the
clements/sensors are assumed to be omni-directional with
unit gain so that o,;”=1.

Spatial Fourth-Order Cumulant Matrix 3 Properties
As with spatial fourth-order cumulant matrix 2, if the

“modified” mixing matrix V has full column rank, spatial
fourth-order cumulant matrix 3 will have many properties in
common with spatial fourth-order cumulant matrix 1. Prop-
erties associlated with the development of a matrix-pencil
and the associated separation technique with the assumption
that the “modified” mixing matrix has full column rank are
derived below.

Property 1: Spatial fourth-order cumulant matrix 3 1s in
general non-Hermitian. It will be Hermitian 1f and only 1if
T,=t,=t and ©,=0, i.e. C_* (1, 0, T) and the sensors all have
the 1dentical gain for a given signal.

Property 2: The trace of spatial fourth-order cumulant
matrix 3 equals the sum of the signal fourth-order cumulants
scaled by the sum of the sensor magnitudes to the fourth
pOWer.

M

N
(Cﬁl”(Tl T, T3) :Zzﬂ'wcr (T1, T2, 73)

J=1 r=1

(121)

Property 3: The column space of spatial fourth-order
cumulant matrix 3, denoted as

C(Ci” (11, T2, T3)),

1s spanned by the set of conjugated “modified” steering
veclors.
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SP(C(Cju(Tl, T, Tg))) = {FT, F;, e s FL} (122)

Further, 1f the “modified” mixing matrix has full column
rank, then the set of conjugated “modified” steering vectors
arc linearly independent and they form a basis for the
column space of spatial fourth-order cumulant matrix 3.
Property 4: The rank of spatial fourth-order cumulant

matrix 3 equals the rank of the mixing matrix, 1f V and \Y
have full column rank. That 1s

ﬁ(cff (71, 72, T3)) = p(V) (123)

if p(V)=p(V)=M, where p( ) denotes rank.

Property 5: The “right” nullspace of spatial fourth-order
cumulant matrix 3 and the conjugate of the “left” nullspace
of the mixing matrix are equal if the mixing matrix and
“modified” mixing matrix have full column rank.

NACY (11, T2, 73)) = Nj (V) (124)

The three definitions of the spatial fourth-order cumulant
matrix presented all have the key attribute that they have no
noise subspace. This feature allows us to avoid either having
to use degrees of freedom 1n the array to estimate the noise
subspace or having to make an assumption of temporal
whiteness so the noise subspace will be gone at non-zero
time lags. However, there are two main differences between
definition 1 and definitions 2 and 3.

First, definitions 2 and 3 have a computational advantage
over definition 1. This can be seen by comparing equation
(76) with equations (93) and (111) where definitions 2 and
3 require N* cumulants to be estimated while definition 1
requires N° cumulants to be estimated. Second, while it
remains to be rigorously proven that spatial fourth-order
cumulant matrix 1 will have a rank equal to the number of
signals if the mixing matrix has full column rank, it has not
been proven that spatial fourth-order cumulant matrices 2
and 3 will have a rank equal to the number of 51gnals if the
mlxmg matrix has full column rank. This second difference
arises from the fact that no proof that the Hadamard product
preserves rank has been found. Therefore, 1t 1s assumed that
for the special case of the “modified” mixing matrix it does
and thus spatial fourth-order cumulant matrices 2 and 3
possess the derived set of properties needed to perform the
blind source separation. However, if this assumption turns
out not to be true, then unless the sensors in the array have
identical manifolds, spatial fourth-order cumulant matrix 2
or 3 may not possess enough degrees of freedom to perform
the separation.

When the sensors in the array all have 1dentical manifolds,
the magnitude of the sensors’ response, |v;|=a.;, is a constant
for each signal, that 1s

|’\f£j|=[1g={1 - (125)

From equation (26)
(126)

N

2 _
Z i =
i=1

which, when all the sensors have identical manifolds, says
that (125) can be substituted in to equation (126) to get



US 6,931,362 B2

33

N (127)
Z af = Nﬂf =1
i=1
and thus
1 (128)
flj' W
Further, if the manifolds are i1dentical then
1 (129)
ﬂj' = W

for all 3. Thus, for spatial fourth-order cumulant matrix 2 it
was found that when the sensors have 1dentical manifolds,
substituting (129) in to equation (100) and factoring in to
bilinear form leads to

(130)

C¥ (1, 12, 13) = = VCHay, T, T3V

Z|l— =~

CHri, 12, T3)

and therefore spatial fourth-order cumulant matrix 2 and
spatial fourth-order cumulant matrix 1 are equivalent within
a real scale factor. Following the identical path for spatial
fourth-order cumulant matrix 3, one can find that

(131)

Cf, (t1, T2, T3) = = V*CHry, 73, 3OV

*®
CY (r1, T2, T3)

Z|l— =~

and therefore when the sensors have identical manifolds,
spatial fourth-order cumulant matrix 3 1s equivalent to the
conjugate of spatial fourth-order cumulant matrix 1 within a
real scale factor. Unfortunately, the assumption that all
sensors have an 1identical spatial response i1s physically
unrealizable and proves to be the undoing of the ESPRIT

algorithm and its higher-order counterparts.

Finally, in N. Yuen and B. Friedlander, “Asymptotic
Performance Analysis of ESPRIT, Higher-order ESPRIT,
and Virtual ESPRIT Algorithms,” IEEE Trans. Signal
Processing, Vol. 44, No. 10, October 1996, pp. 2537-2550,
it 1s claimed that the advantage of definition 3 over definition
2 1s that when finite length data 1s used to estimate the spatial
fourth-order cumulant matrix, spatial fourth-order cumulant
matrix 3 will retain 1ts Hermitian symmetry, subject to the
conditions stated 1n property 1. This property 1s not known
to be of value to the matrix-pencil approach presented 1n the
subsequent chapters and thus has not been evaluated for its
validity.

Provided below are a spatial fourth-order cumulant matrix
pencil definition and associated properties. The indetermi-
nacy of the standard eigen analysis of a spatial fourth-order
cumulant matrix 1s described to motivate the use of a spatial
fourth-order cumulant matrix-pencil by showing. The
definition, properties, and spectral theory of matrix-pencils
are presented including treatment of singular pencils and
development of the novel concept of wide sense equiva-
lence. The spatial fourth-order cumulant matrix-pencil is
defined and its properties are derived for all three spatial
fourth-order cumulant matrix definitions. Finally, 1t 1s shown
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that the spectral analysis of the spatial fourth-order cumulant
matrix-pencil provides a set of generalized eigenvectors that
can be used as a basis for blindly separating the individual
source signals.

The formulation of a separation matrix to perform blind
source Includes finding a set of vectors that are each
uniquely orthogonal to all steering vectors except one. The
set of these vectors, possibly scaled by a normalization
factor, form the columns of the separation matrix W that will
diagonalize the mixing matrix V. The concept of blind
source separation was previously described above, and the
development of a technique to find a separation matrix using
a spaftial fourth-order cumulant matrix 1s provided below.

A spatial fourth-order cumulant matrix signal subspace
based spectral estimation technique 1s sought to perform the
blind separation. In the context of a matrix subspace, spec-
tral estimation implies eigen analysis and as such the terms
spectral and eigen will be used interchangeably. In
mathematics, eigenvalues are also often referred to as proper
values. See, for example, P. R. Halmos, Finite-Dimensional
Vector Spaces. (Springer-Verlag, New York, N.Y.: 1987),
which 1s hereby incorporated by reference in its entirety as
if presented herein. Unfortunately, in general the standard
spectral decomposition of the spatial fourth-order cumulant
matrix will not directly provide a set of eigenvectors that
will diagonalize the mixing matrix. A set of eigenvectors for
the spatial fourth-order cumulant matrix does exist that will
diagonalize the mixing matrix, however the entire signal
subspace would have to be searched to find this unique set
of eigenvectors. Thus, the standard eigen decomposition of
the spatial fourth-order cumulant matrix possesses an 1nde-
terminacy that makes 1t undesirable. The indeterminacy of

the standard eigen analysis 1s discussed 1n Section 5.2 1n
detail.

The indeterminacy of the standard eigen decomposition
can be overcome by the use of the generalized eigen analysis
of a spatial fourth-order cumulant matrix-pencil. Therefore,
a spatial fourth cumulant matrix-pencil of two spatial fourth-
order cumulant matrices 1s defined by using two different
sets of time lags, (0, 0, 0) and (T4, T5, T3).

Indeterminacy of the Standard Eigen Analysis: The for-
mulation of a signal subspace based spectral estimation
method to blindly separate the mixture of statistically inde-
pendent source signals 1s begun by examining the indeter-
minacy that exists in trying to use the standard eigenvectors
of spatial fourth-order cumulant matrix 1, C_*(t4, T, T3), to
perform the blind source separation. In general, the results
presented for spatial fourth-order cumulant matrix 1 are
directly applicable to spatial fourth-order cumulant matrices
2 and 3 and thus will be presented for spatial fourth-order
cumulant matrix 1 only. However, any differences or excep-
fions that may exist for spatial fourth-order cumulant matri-
ces 2 and 3 will be appropriately noted.

The standard eigenvalue problem for spatial fourth-order
cumulant matrix 1 1s defined as
C.*(ty, T, T5)e=he. (132)
A scalar A 1s said to be an eigenvalue of spatial fourth-order
cumulant matrix 1 if the equality in equation (132) holds a
non-null eigenvector ¢, an associated eigenvector. Rewriting
equation (132), it is found that an eigenvector of spatial
fourth-order cumulant matrix 1 lies 1n the “right” null space
of a matrix-pencil. That 1s

(C*(T15 T2 T3)=My)e=0 (133)
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therefore

eeN (C (T, T, T3)-Aly). (134)
The matrix-pencil

{C Ty, Ts, Ts), 11=C (T4, To, T3)-My (135)

is non-singular with rank N even though C_*(t,, T, T5) has
rank M when A 1s not an eigenvalue. Thus, the eigenvalue A
will reduce the rank of the matrix-pencil {C_*(t,, T, T3 ), [y}
by a value m®““™, which 1s referred to as the “geometric
multiplicity” of the eigenvalue A and 1s given by

N =N-p(C, (T, To, T3)-Ay). (136)

Since A 15 an eigenvalue 1f and only 1if the rank of the
matrix-pencil 1s reduced, the eigenvalues can be found by
scarching for roots of the characteristic equation. That 1s, the
values that cause the determinant of the matrix-pencil to be
ZETO,

det(C (T, To, T3 )=Ady)=0 (137)

are eigenvalues.
The determinant in equation (137) is defined as the sum
of products

det(C (11, T2, T3) = Aly) = Z (— 1)Piler-c2. o en) (138)
!
([Cir1s 72, 73], = 1y A) oo
([Cj(rla T2, T3)]N‘:N — CSN,:NA.)

where the set {c,, c,, . . ., Cyt is the 1” permutation of the
first N positive integers, with the summation occurring over
all L=N! such permutations, and the scalar ¢ __ represents the
element in the r”” row and ¢ column of the identity matrix
[~ The exponent in (138) is a scalar defined as a function of
the set {¢,, C,, . . ., Co} DY

(139)
¢£(Cl . Cay .

N—-1
. CN) = Z gn
n=1

where € is the number of integers in the sequence ¢

n+l12 *

., Cx that are less than c,. Substituting equation (84) in to
(138)

CN) (140)

det(Ci(ty, T2, T3) — Aly) = Z (—1)Prlere2, -

{

{ R

M
4
Z V1jVe, jCr;(T1s T2, T3) = 01 A ] ...

=1 J

{ R

M
x4
Z FMVcher(Tla T2, T3) = Oncp A

=1 J

it becomes clear that each non-zero value of A that will cause
the determinant in (140) to be equal to zero will be a linear
combination of the individual source signal fourth-order
cumulants. Therefore, since each eigenvalue 1s a linear
combination of the source signals fourth-order cumulants it
1s reasonable to expect that the eigenvectors will be linear
combinations of the associated steering vectors. This 1n fact
can be shown to be true. Substituting equation (87) for the
spatial fourth-order cumulant matrix, equation (132)
becomes
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M (141)
Z (71, T2, T3)V; vHE:' = Ae.

J=1

The vector mner product Vj.He will equal a scalar that 1s
defined here as

L H
€=V, € (142)

then equation (141) becomes

M (143)
Z:; f (71, T2, T3)V;.

Alternatively, 1t can be show that each eigenvalue 1s a
linear combination of the source signal fourth-order cumu-
lants by pre-multiplying (141) by the Hermitian transpose of
the eigenvector and dividing by the inner product, e, since
there 1s only one eigenvalue such that the equality 1n
equation (141) for a particular eigenvector (See, for
example, D. A. Harville, Matrix Algebra from a Statisti-
cian’s Perspective. (Springer-Verlag, New York, N.Y.:
1999), which is hereby incorporated by reference in its
entirety as if presented herein), each eigenvalue can there-
fore be expressed as

M 144
) v viie (144)
A= E Cri(T1> T2, T3) —p——
=1

which 1s clearly a linear combination of the individual
source signals’ fourth-order cumulants.

If 1t 1s assumed that the mixing matrix V has full column
rank, spatial fourth-order cumulant matrix 1 will have rank
M by property 4. Therefore, there will be M non-zero
eigenvalues whose sum will equal the trace of the spatial
fourth-order cumulant matrix. That 1s, employing property 2

of spatial fourth-order cumulant matrix 1
Y M (145)
Z tw[CY (1, T2, T3)] =Z (71, T2, T3).
k=1 J=1
Substituting (144) into equation (145) results in
(146)

ey vjvj e, U )
ct (Tl-,- T2, T3) = Z Cr, (T1, T2, T3).
Eﬁi Ek

J=1

Clearly, there exists an indeterminacy in the standard
eigen analysis of spatial fourth-order cumulant matrix 1. The
same Indeterminacy exists for definitions two and three and
arises from the fact that 1n general, the 1denfity matrix 1s not
“similar” to spatial fourth-order cumulant matrix 1.
Therefore, a new matrix must be found, which for now can
be referred to as the new B matrix, that 1s “similar” to the
spatial fourth-order cumulant matrix to replace the identity
matrix 1n the matrix-pencil and thus move to a generalized
eigen analysis of spatial fourth-order cumulant matrix 1 with
respect to this new B matrix. Here “similar” means that the
B matrix can be factored into a bilinear form, as was done
for spatial fourth-order cumulant matrix 1, with the mixing
matrix, and the modified mixing matrix for definitions 2 and
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3, being two of the three factors and some diagonal matrix
being the third. That 1s

B=VDV* (147)

where D 1s a diagonal matrix.

Definition, Properties, and Spectral Theory of Matrix-
Pencils

A matrix-pencil 1s a special case of what 1s known 1n
mathematics as a polynomial operator pencil. Polynomial
operator pencils and their associated spectral problems arise
naturally in many diverse arecas such as differential
equations, boundary value problems, control theory, har-
monic systems analysis, wave propagation, elasticity theory,
circuit simulation and modeling, and hydromechanics. See,
for example, A. S. Markus, Introduction to the Spectral
Theory of Polynomial Operator Pencils, Translation of
Mathematical Monographs, Vol. 71. (American Mathemati-
cal Society, Providence, R.I1.: 1988), which is hereby incor-
porated by reference 1n 1its entirety as if presented herein. In
oeneral, an n” order polynomial operator pencil takes the
form

AM=At A+ ... +AA, (148)

where A 1s a spectral parameter and the A/’s are linear
operators acting 1n a Hilbert space. A matrix-pencil, P(R), 1s
a first-order polynomial operator pencil that has the form

P())=A-\B. (149)

In general, matrix-pencils are classified as being either
regular or singular. See, for example, A. S. Markus, Intro-
duction to the Spectral Theory of Polynomial Operator
Pencils, Translation of Mathematical Monographs, Vol. 71.
(American Mathematical Society, Providence, R.I.: 1988),
Z.. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der
Vorst, Templates for the Solution of Algebraic Eigenvalue
Problems: A Practical Guide. (SIAM, Philadelphia, Pa.:
2000), K. Kanatani, Statistical Optimization for Geometric
Computation: Theory and Practice. (Elsevier Science B. V.,
Amsterdam, The Netherlands: 1996), G. H. Golub and C. F.
Van Loan, Matrix Computations. (The Johns Hopkins Uni-
versity Press, Baltimore, Md.: 1996), F. R. Gantmacher, The
Theory of Matrices, Volume I. (AMS Chelsea Publishing,
Providence, R.I., 1977), and F. R. Gantmacher, The Theory
of Matrices, Volume II. (AMS Chelsea Publishing,
Providence, R.I., 1989), each of which is hereby incorpo-
rated by reference 1n its entirety as 1f presented herein. If the
two matrices, A, B, are square and the determinant of the
matrix-pencil 1s not identically zero for all values of A, that
1S

det(P().))=det(A-AB)=0 Vi (150)

then the pencil 1s regular otherwise 1t 1s singular. Regular
pencils have well defined eigenvalues which change con-
tinuously as functions of matrices A and B. Singular pencils,
on the other hand, have eigenvalues that are discontinuous
functions of A and B. Both types of pencils arise 1n practice
and, are applicable to the BSS technique in accordance with
the present invention. Note that the standard eigen problem
1s a regular matrix-pencil with B=I,,.

Properties and Spectral Theory of Regular Matrix-Pencils

Regular pencils can be further classified as being Hermi-
fian or non-Hermitian. Non-Hermitian matrix-pencils and
their associated generalized non-Hermitian eigen problems
arise when either A or B 1s non-Hermitian or B 1s not positive
definite. Due to property 1 of the spatial fourth-order cumu-
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lant matrix, the spatial fourth-order cumulant matrix-pencil
will 1n general be non-Hermitian. This will be shown to hold
for all three definitions. Therefore, the focus will be on
non-Hermitian regular pencils only and hence forth when
the term regular pencil 1s used a non-Hermitian pencil 1s
implied. Please see, for example, Z. Bai, J. Demmel, J.
Dongarra, A. Ruhe, and H. van der Vorst, Iemplates for the
Solution of Algebraic Eigenvalue Problems: A Practical
Guide. (SIAM, Philadelphia, Pa.: 2000), K. Kanatani, Sta-
tistical Optimization for Geometric Computation: Theory
and Practice. (Elsevier Science B. V., Amsterdam, The
Netherlands: 1996), G. H. Golub, and C. F. Van Loan,
Matrix Computations. (The Johns Hopkins University Press,
Baltimore, Md.: 1996), and F. R. Gantmacher, The Theory of
Matrices, Volume I. (AMS Chelsea Publishing, Providence,
R.I. 1977), each of which is hereby incorporated by refer-
ence 1n its enfirety as if presented herein, for discussions on
Hermitian pencils.

The characteristic polynomial of a regular N by N matrix-
pencil,

p(W)=det(P(L))=det(A-1B) (151)

1s by definition not identically zero for all values of A. The
degree of p(») is at most N. This means that there are N
cigenvalues, which may be finite or infinite, with the roots
of p(A)=0 being the finite eigenvalues of the matrix-pencil.
The set of eigenvalues of the matrix-pencil, P()), are more
commonly known as the “generalized” eigenvalues of the
matrix A with respect to the matrix B and are defined by

MA, B)={zeC:det(A-zB)=0} (152)

The eigenvalues of a regular pencil are continuous func-
tions of A and B thus small changes in A and B cause small
changes 1n the eigenvalues. If the degree of the characteristic
polynomial 1s less than N, then the pencil 1s said to have
N-M infinite eigenvalues, where M 1s the degree of the
characteristic polynomial p(A). The set of all eigenvalues,
MA, B), of a matrix-pencil is referred to as its spectra. See
for example, and F. R. Gantmacher, The Theory of Matrices,
Volume II. (AMS Chelsea Publishing, Providence, R.I.,
1989), which is hereby incorporated by reference in its
entirety as if presented herein, and A. S. Markus, Iniroduc-
tion to the Spectral Theory of Polynomial Operator Pencils,
Translation of Mathematical Monographs, Vol. 71.
(American Mathematical Society, Providence, R.I.: 1988),
Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der
Vorst, Templates for the Solution of Algebraic Eigenvalue
Problems: A Practical Guide. (SIAM, Philadelphia, Pa.:
2000), K. Kanatani, Statistical Optimization for Geometric
Computation: Theory and Practice. (Elsevier Science B. V.,
Amsterdam, The Netherlands: 1996), G. H. Golub and C. F.
Van Loan, Matrix Computations. (The Johns Hopkins Uni-
versity Press, Baltimore, Md.: 1996), and F. R. Gantmacher,
The Theory of Matrices, Volume I. (AMS Chelsea
Publishing, Providence, R.I., 1977)[45-50]. Note that as
with the standard eigenvalues, an eigenvalue reduces the
rank of the pencil by a value n*“", which is referred to as
the “geometric multiplicity” of the eigenvalue A.

For each finite eigenvalue, any non-zero vector lying in
the right null space of the matrix pencil evaluated at the
cigenvalue 1s defined as a “right” eigenvector for that
eigenvalue.

eeN,(A-AB) (153)
That is, for AeAMA, B), any vector ¢ that satisfies
(A-AB)e=0, e=0 (154)
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1s an eigenvector corresponding to that eigenvalue. As with
the eigenvalues of a matrix-pencil, the eigenvectors are often
referred to as “generalized” eigenvectors. For an infinite
eigenvalue, any non-zero vector lying in the right null space
of the matrix B 1s an eigenvector. That 1s any non-zero vector
that satisfies

Be=0 (155)

corresponds to an eigenvalue A=coc. An N by N regular
matrix-pencil may not have N linearly independent eigen-
vectors. However, at least one independent eigenvector will
exist for each distinct eigenvalue. As with standard
eigenvectors, the set of generalized eigenvalues A(A, B) is
unique while the set of eigenvectors 1s not.

Each regular matrix-pencil has two associated subspaces,
denoted X and Y, that have the same dimension and satisty

AxeY, BxeY VxeX. (156)

These subspaces are called right and left deflating subspaces,
respectively. Further,

span, y{ Ax, Bx}=Y (157)
and therefore
AX+BX=Y, (158)

Deflating subspaces are important in the development of
techniques for solving regular generalized eigen problems
(See, for example, P. Van Dooren, “Reducing Subspaces:
Definitions, Properties, and Algorithms,” Matrix Pencils,
Proc. Pite Havsbad, Lecture Notes in Mathematics 973,
Springer-Verlag, New York, N.Y., 1982, pp. 58—73, which 1s
hereby incorporated by reference 1n its enfirety as 1f pre-
sented herein)[51], such as the QZ algorithm, which is
currently considered the most powerful technique for solv-
ing dense non-Hermitian regular generalized eigen prob-
lems.
Finally, let X and Y be non-singular matrices where

A=Y7AX B=Y"BX. (159)
Then the matrix-pencil
P()=A-\B (160)

is “equivalent” to the matrix-pencil P(A) and X and Y are
referred to as “equivalence transformations”. The matrix-
pencil P(A) has the same eigenvalues as P(A) and its right
eigenvectors, denoted €, are related to the right eigenvectors
of the pencil P(X) by the transformation

e=X"e. (161)

Properties and Spectral Theory of Singular Matrix-
Pencils

Matrix-pencils are singular if either they are rectangular
or they are square and

det(P().))=det(A-AB)=0 Vi (162)

holds. For a square pencil to be singular, both matrices A and
B must be singular and have a common nullspace. That 1s

det(A)=det(5)=0
N,(A)=N, (B) (163

are necessary and sufficient conditions for the pencil P(A) to
be singular. Both cases arise 1n practice and are significantly
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more difficult than regular pencils to handle. Since by
definition the spatial fourth-order cumulant matrix 1s square,
only square singular pencils are considered.

The characteristic polynomial of a singular N by N
matrix-pencil 1s equal to zero for all functions of A.
Theretfore, the eigenvalues of a singular pencil are discon-
tinuous functions of the matrices A and B and care must be
taken 1n defining the eigenvalues of singular pencils.
Obviously, the eigenvalues can no longer be found by
finding the roots of the characteristic polynomial. Instead,
the concept of reducing subspaces 1s used to define the
eigenvalues and eigenvectors of a singular pencil.

A pair of right and left reducing subspaces of the pencil
P(}.), denoted X and Y respectively, satisfy

AxeY, BxeY VxeX (164)

and

span,_y{Ax, Bx}=Y. (165)
where the dimension of the right reducing subspace, X, 1s
orcater than the dimension of the left reducing subspace Y
by the dimension of the right null space of the pencil over
the field of all rational functions of A. That 1s

dim(X)=dim(¥)+dim(N (A-\B)). (166)
The reducing subspaces play a role similar to that of
deflating subspaces for regular pencils. The rank of a matrix-
pencil 1s 1n general a constant M for most values of A.

pP(M)=M (167)

However, for a certain set of values the rank of the pencil

1s “reduced”, thus motivating the concept of a reducing
subspace. The set of values, denoted A(A, B), that contain
the values of A that cause the rank of the singular pencil to
“reduce” are the eigenvalues or spectra of the singular
pencil.

MA, B)={zeC:p(A-zB)<M (168)
The amount the rank of the pencil 1s reduced 1s the geometric
multiplicity, n=°"", of the particular eigenvalue.

ME"=M-p(P(A)), heMA, B) (169)
Note that the eigenvalues of a singular matrix-pencil can be
finite, infinite, or indeterminate.

For each finite eigenvalue, any non-zero vector lying 1n
the right null space of the matrix pencil evaluated at the
cigenvalue 1s defined as a “right” eigenvector corresponding
to that eigenvalue.

eeN,(A-AB) (170)
That is, for AeMA, B), any vector ¢ that satisfies
(A-AB)e=0, e=0 (171)

1s an eigenvector corresponding to that eigenvalue. For an
indeterminate eigenvalue, any non-zero vector lying in the
right null space of the matrix B, and thus in the right null
space of matrix A, 15 an eigenvector corresponding to an
indeterminate eigenvalue. Put 1n other words, any non-zero
vector lying in the right nullspace of A (or B) i1s an
eigenvector corresponding to an indefinite eigenvalue.
Rewriting equation (171) and solving for A results in
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et Ae (172)

el Be

Clearly, 1f € lies in the common right null space of A and B,
A=0/0 and thus the eigenvalue 1s indeterminate.

As with regular pencils, the concept of “strict” equiva-
lence 1s now defined. Let X and Y be non-singular matrices
that do not depend on A where

A=Y"AX B=Y"BX. (173)
Then the matrix-pencil
P(M)=A-\B (174)

1s “strictly equivalem” to the matrix-pencil P(A) and X and
Y are referred to as “strict equivalence transtormations”. The
matrix-pencil P(A) has the same eigenvalues as P()). Also,
the right and left reducing of the matrix-pencil P()), X and

Y, are related to the right and left reducing subspaces of the
pencil P(A) by

X=X"'X Y=Y"Y. (175)

The consequence of the effect of the equivalence transfor-
mation on the reducing subspaces 1s that the right eigenvec-
tors of P()), denoted &, are related to the right eigenvectors
of the pencil P(X) by the transformation

e=X"e. (176)

Wide Sense Equivalence of Matrix-Pencils

The term “strict” equivalence was emphasized previously
herein to distinguish 1t from what 1s defined here as “wide
sense” equivalence. Given the M by N full row rank
matrices X and Y that are independent of A, where

A=Y"AX B=Y"BX (177)

then the N by N singular pencil P(}) is said to be wide sense
equivalent to the M by M non-singular pencil P(A) where

P(h)=A-AB. (178)

Note that having rectangular X or Y 1s a sufficient condition
to guarantee that P(A) is singular.

It will now be determined if the wide sense equivalence
transformations preserve the spectra of P(A) and if the
eigenvectors of P(M) are related to the eigenvectors of the
non-singular pencil P(A) by some equivalence transforma-
tion. To show this is true, let AeAM(A, B), MA, B)c (A, B)
and € be a finite or mﬁmte cgeneralized eigenvalue and
associated eigenvector of the singular pencil P(A). Since the
M by N matrix X has full row rank it has a “right” mverse.
That is a N by M matrix X ' exists such that

XX =], . (179)

Also, since the matrix Y has full row rank, Y has full

column rank and therefore Y* has a “left” inverse. That is
a M by N matrix (Y?)™*/ exists such that

(Yy=tyH=r,,. (180)
Clearly
(Y MR (X =(Y) YA RB)XX V' =P(h). (181)

The generalized eigenvalue problem 1s formulated as

Aé=hBé. (182)
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Define the N by 1 vector y as

y=[(¥")" e

where ¢ 1s an eigenvector of the matrix-pencil P(A). The
products v'Aé and y"“Bé are scalars, therefore

(183)

(184)

b

yiA
yH B

A=

Ty

Similarly, an eigenvalue of the non-singular pencil P(A) is

el Ae (185)

el Be

A=

Substituting (177) in to equation (184) results in
' (YHAX)2 (186)

A = .
yH (YH BX)?

Then, using equation (183), (186) becomes

M AXD (187)

- eHBXe'

e vy M yH Ax)s

A= Yy ~
eH (YHY U (YH BX

Clearly every finite or infinite XEK(A,E) 1s an eigenvalue of
the pencil P(A) with a corresponding eigenvector

e=X"Ve (188)

It can therefore be concluded that the set of finite and

infinite eigenvalues of P(1), MA, B) is equal to the set of
cigenvalues of the non-singular pencil. That 1s
MA, B)

=AA, B) (189)

and that the eigenvector é of P()) is related to the eigen-
vector of P(A) by the equivalence transformation

e=X"1"e. (190)

The Spatial Fourth-Order Cumulant Matrix-Pencil: Defi-
nition and Properties

The spatial fourth-order cumulant matrix-pencil 1s defined
on a pair on a pair of two spatial fourth-order cumulant
matrices at delay lags (0, 0, 0) and (T,, T,, Ts), as

P (h, T)=C 0, 0, 0)-AC *(t{, T5, T3) (191)

where the set of non-zero delay lags 1s denoted 1n vector
form as t=[t,, T,, T4]. As with the spatial fourth-order
cumulant matrix, there are 1n three definitions for the spatial
fourth-order cumulant matrix-pencil; each corresponding to
the definition used for the pair spatial fourth-order cumulant
matrices. Spatial fourth-order cumulant matrix-pencil 1 uses
a pair of spatial fourth-order cumulant matrices 1 and 1s
given in equation (191) above. Spatial fourth-order cumu-
lant matrix-pencil 2 1s defined on a pair of spatial fourth-
order cumulant matrices using definition 2 as

P (h, ©)=C "0, 0, 0)-AC * (T4, T5, T3) (192)

Finally, spatial fourth-order cumulant matrix-pencil 3 1is
defined on a pair of spatial fourth-order cumulant matrices
using definition 3 as

P."(h, T)=C,*"(0, 0, 0)-AC,*"(ty, To, Ts) (193)



US 6,931,362 B2

43

Since it was shown 1n Chapter 4 that all three definitions
have similar matrix properties if the Hadamard product
preserves rank, the properties for spatial fourth-order cumu-
lant matrix-pencil 1 are derived and any differences for
spatial fourth-order cumulant matrix-pencils 2 and 3 noted.

Spatial Fourth-Order Cumulant Matrix-Pencil Property 1

Spatial fourth-order cumulant matrix-pencil 1 can be
factored into Hermitian form as

P (h, ©)=VP (A, 1)V (194)

where V is the mixing matrix and P(A, T) is an M by M
matrix-pencil on a pair of diagonal signal cumulant matri-

CCS.
P.(h, T)=C, 40, 0, 0)-AC,*(t,, To, Ts). (195)

Spatial fourth-order cumulant matrix-pencils 2 and 3 can
be factored 1n to the bilinear form

P (h, ©)=VP,(h, T)V (196)
and

P."(h, T)=V*P (h, VT (197)
respectively.

Spatial Fourth-Order Cumulant Matrix-Pencil Property 2

The rank of spatial fourth-order cumulant matrix-pencil 1
equals the number of signals, M, for “most” values of A 1f
V has full column rank. That is, for ¢ M(C,*(0, 0, 0), C,*(z,,
T,, T3)) and p(V)=M,

p(P, (b, T))=M. (198)

Spatial fourth-order cumulant matrix-pencils 2 and 3 possess
the same property if the Hadamard product (196) preserves
rank.

Spatial Fourth-Order Cumulant Matrix-Pencil Property 3

The spatial fourth-order cumulant matrix-pencil 1s in
general non-Hermitian. It 1s a regular pencil if M=N and V
has full column rank, otherwise, when M<N or if V does not
have full column rank 1t 1s a singular pencil. Spatial fourth-
order cumulant matrix-pencils 2 and 3 additionally require
that the Hadamard product given in (4.65) preserve the rank
of V for the pencil to be regular.

Spatial Fourth-Order Cumulant Matrix-Pencil Property 4

The spatial fourth-order cumulant matrix-pencil, P (A, T),
is strictly equivalent to the regular pencil P,(;, T) if P (A, T)
1s a regular pencil. Otherwise, the spatial fourth-order cumu-
lant matrix-pencil, P (A, T), is wide sense equivalent to the
regular pencil P (:, ©) if the mixing matrix has full column
rank. Spatial fourth-order cumulant matrix-pencils P_'(A, T)
and P_"(), T) additionally require that the Hadamard product
given in equation (4.65) preserve rank.

Spectral Analysis of the Spatial Fourth-Order Cumulant
Matrix-Pencil

The spectral theory of the spatial fourth-order cumulant
matrix-pencil 1s explored i two manners. First exploiting
the equivalence, strict or wide sense, 1t will be show that the
finite spectra of the pencil P (A, T) has a one-to-one mapping
to set of signal fourth-order cumulants and thus each gen-
eralized eigenvalue can be associlated with a source and its
assoclated eigenvector with the signal’s steering vector. The
same relation 1s then shown by using the outer product
expansion of the eigenvalue problem and the linear inde-
pendence of the steering vectors. In both cases V 1s assumed
to have full column rank and 1t 1s the finite generalized
cigenvalues and their associated eigenvectors that are the
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focus since 1t 1s only the signal subspace that 1s of interest.
As before, spectral theory for spatial fourth-order cumulant
matrix-pencil 1 will be presented and any differences that

may arise for spatial fourth-order cumulant matrix-pencils 2
and 3 will be noted.

From property 4 of the spatial fourth-order cumulant
matrix-pencil, P_(A, T) is equivalent, in a strict or wide sense,
to the M by M regular pencil P (), T). By the definition of
equivalence, the set of finite and 1nfinite spectra eigenvalues
of P (A, T), MC. %0, 0, 0), C.*(t,, T,, T5)), is equal to the
spectra of the pencil P,(A, T), M(C, (0, 0, 0), C,*(t4, T, T3)).

j;\,(qu((],, 0, U): Cx4(11: To, TS))=

}\”(er([j! U? U)! Cr4(1:1: TE: TS) (199)
Clearly if P (A, T) is regular then
i(qu((]p 0, U): Cx4(1:1: T, TS)=
MC 0, 0, 0), C 1z, T, T)). (200)

Since the pencil P (A, T) is regular, its spectra can be
determined by finding the roots of its determinate set equal
to zero. Since P (A, T) is diagonal by definition, the deter-
minate will be the product of its diagonal components, 1.¢.

B M (201)
det(P,(4, ) = | | (¢],0.0, 0= 2¢}. (71, 72, 7))
=1

By inspection of (201), the spectra of P (A, T) is the set

A(C}0,0,0), Clry, 72, 73)) = (202)

{ZEC:zz

By Assumption A2 the signal cumulants are strictly non-zero
and as such the spectra will contain M finite, non-zero
cigenvalues, counting multiplicities, each corresponding to
the ratio of a particular signal’s cumulants at a zero and
non-zero set of lags. Since the eigenvalues maybe complex,
there 1s no fixed way to order them. For convenience,
however, they will be ordered by their association with the
i signal as A, 1.€.

¢} (0,0, 0) “‘
! jell, ..., M}

A

Cij (t1, T2, T3)

c;‘j (0, 0, 0) (203)

A =
/ Cij(fla Ty, T3)

Of the M eigenvalues, there may only be K distinct values
they assume, denoted as u,, with each value having a
multiplicity of m,. Therefore, the eigenvalues can be
grouped into K sets, denoted A (C,*(0, 0, 0), C.*(t,, T,, T:)),
that contain the eigenvalues equal to u,.

A(CHO, 0,0), Chizy, 72, 73)A A € C:A; = ) (204)
Note that for a diagonal regular pencil, 1 &=, “$=",.
Clearly,
}\‘(C:l([]: U: U): C:l(-cl: TE: TS)=}\‘1(Cr4(O: U: U):
CA(T, To THU Lo UR(C,H0, 0, 0), C,2(Ty, T2, T3))  (205)

For each u, there are 1, signals with the i1dentical ratio of
their cumulant at zero lags to their cumulant at non-zero
lags. This ratio 1s the mverse of what will be defined 1n the
subsequent chapter as the normalized fourth-order auto-
cumulant.
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A “right” eigenvector corresponding to a particular eigen-
value for a regular pencil will be a non-zero vector that lies
in the right null space of the pencil evaluated at the eigen-
value.

46

ing to 1ts own column mdex. Therefore, the columns of
(V)™ are uniquely associated with a signal’s steering
vector. Thus it can be seen that

5 ~Hy, _ quHs H _ (yHuHLr D H (209)
i vV ={vie )" = v vy e} =l
Pr(}"=}"j: a€j=0 (206) J / Y J
The §1genve§t0r Cp15d Mby 1 Vect(?r with M-, zeros in Thus the eigenvectors, ¢, can be used to blindly separate
the positions with 1.11(11(365 c.or.respondmg to the columns of the signals. As mentioned earlier, the selection of the eigen-
the diagonal pencil containing non-zero elemeints' when o vectors corresponding to a repeated eigenvalue must be done
evaluated at A=A=g, a distinct eigenvalue. This i1s now  with care. Clearly the output of ¢V will be a linear
illustrated with an example. | combination of the rows of the mixing matrix and thus will
For example, the M by M diagonal pencil, M>3, has the  result in a vector who is linear combination of the rows of
form the steering vectors of the signals associated with the
PI“(AW ?) =
¢, 0,0,0)=Acy (71, 72, 73) O 0
0
.:j!j (0, 0, 0) —Aci,j (T1, T2, T3)
0
0 0 ¢}, (0,0,0)-Ack (11,72, 73)
¢} (0,0, 0) ¢} (0,0, 0)
If 1 — 3
c} (71, 72, 73) ¢ (T, T2, T3)
¢t (0,0, 0) ¢y, (0,0, 0)
then A; = 41 = — = A3 = 4
Cr, (T1, 72, 73) ¢ (T1, T2, T3)
and the distinct eigenvalue 1, has a multiplicity of two. The cigenvector, that 1s the rows of V corresponding to the
eigenvectors corresponding to the eigenvalues Ay and Ay non-zero elements of e,. For spatial fourth-order cumulant
have the form 2 matrix-pencils 2 and 3, if the Hadamard product preserves
ey 0 ey 0. .. OTie(1, 31 the rank of V, then a similar result 1s found by exploiting a

e=le; Oes; 0. .. €11, : : .

PR ] corresponding equivalence transformation between the
where ¢,; and e; are arbitrary scalars, both not equal to zero. “left” eigenvectors of the pencils P,(A, T) and P (A, T). Note
Clearly the eigenvectors are not unique, however the loca- that similar results will be achieved with the left
tions ot the non-zero elements are and the eigenvectors are 40 eigenvectors, i.e. those 1 by N vectors, d,, that lie in the left
uniquely associated with the signals. null space of the pencil evaluated at the eigenvalue.

A set of M eigenvectors 1s required. However, when there _ _ _
are only K distinct eigenvalues, care must be taken in The precedu?g Spect}'al analysis of the Sp{:l"[lal fourth-orqer
selecting the eigenvectors corresponding to a repeated cumulant matrix-pencil can be performed 1n an alternative
proper value so that subsequent separation stages may be 45 way by expanding the pencil into a sum of outer products
used to separate the signals associated with a repeated and exploiting the linear independence of the steering vec-
cigenvalue. The constraints for finding eigenvectors corre- tors. The generalized (right) eigenvalue problem for the
sponding to repeated eigenvalues will be discussed in the matrix-pencil P_(A, T) is defined as
following chapter.
anmder now the spapgl fourth-.ordef cumulant matrix- sg CA0, 0, 00,20, C. 4t T, T (210)
pencil, P_(A, T). If the mixing matrix V is assumed to have
full column rank, then by spatial fourth-order cumulant o _ _
matrix-pencil property 4, P.(A, T) is equivalent, either Substltutl‘ng-equatlon (87) for the §patlal fourth-ordffr cumu-
strictly or in a wide sense, to the pencil P (A, T). Thus, the lant matrix in (210) and rearranging terms results in
pencil P (X, T) has the same finite and infinite eigenvalues as 55
P (A,t) and the eigenvectors of P (A1), designated €., cor- LA ) y (211)
: . : /7, Z VJ,'[C' (0,0, 0) — wcel (t1, T2, Tg)]v-%k = 0.
responding to the finite eigenvalues are related to the eigen- < I g J
vectors of P,(A,T) by
e=(V7) e, (207) &0 .. . _
If the mixing matrix 1s assumed to have full column rank its
Since the rows of V¥ are the conjugated signal steering columns are linearly mdependent and thus
vectors by definition, for
4 4 Hs
W(W)_1r=fM (208) [er- (U: U: D)_ﬁﬁccrj (1:1:: To, 13)]1'}' Eﬁc_g (212)
65

the columns of (V)™ must be orthogonal to all steering
vectors except the one 1n the row with the index correspond-

for all 7 for the equality in equation 211 to hold. This leads
to the
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ﬁﬁﬁﬂﬂn (213)

Hy =
Ci‘j(’n, T2, T3)

for any j when v;“¢,=0. Since by property 5 V¥ and C *(t,
T,, T5) have a common right null space, any eigenvector that
lies in the right null space of V¥ has a corresponding
indeterminate eigenvalue, since €, can only lie 1n the null
space of V¥ if the pencil is singular. Therefore, as with the
equivalence approach presented previously, the eigenvalues
and their associated eigenvectors are uniquely associated

with the source signals with the ratio

éﬂ&ﬂﬂh (214)

Cij(ﬂ, 75, T3)

acting as a discriminant. Similar results hold for spatial
fourth-order cumulant matrix-pencils two and three if the

modified mixing matrix V has full column rank.

A blind source separation technique in accordance with
the present invention 1s described utilizing all three spatial
fourth-order cumulant matrix definitions and the conditions
of 1dentifiability are discussed. A normalization method is
also developed to allow the separation algorithm to maxi-
mize the separation power efficiency (SPE). The concept of
a normalized fourth-order auto-cumulant 1s presented and a
method of selecting eigenvectors for repeated eigenvalues to
facilitate cascaded processing 1s developed.

FIG. 5 1s a functional block diagram of a blind source
technique and processor 1n accordance with an embodiment
of the present invention. Blindly separating M statistically
independent source signals under the narrowband assump-
tion requires finding a N by M separation matrix W that will
diagonalize the mixing matrix V. That is, from equation (39),

a separation matrix 1s sought such that

o 0 o 0] (215)
0 p2 '
Wiy =|
0
0 - 0 puy |

Calculating this separation matrix 1s one function of the
blind source separation technique.

It was previously explained that the generalized eigen-
vectors of the spatial fourth-order cumulant matrix-pencil
would separate signals based on the ratio of their cumulants
at two different sets of time lags. These results are exploited
in the formalization of a technique to calculate a separation.
This technique will theoretically minimize the residual
interference-to-signal ratio (ISR) and, with the proper
normalization, to maximize the separation power efliciency
(SPE).

As also previously described, a factor in finding the
eigenvectors of the spatial fourth-order cumulant matrix-
pencil 1s what was referred to as the normalized fourth-order
auto-cumulant. This arises from the finite eigenvalues of the
spatial fourth-order cumulant matrix-pencil equaling the
inverses of the individual source signals normalized fourth-
order auto-cumulants; the aforementioned ratio of cumu-
lants at two different sets of time lags with the set of time
lags 1n the numerator cumulant equal to zero. Specifically,
since 1t was shown that if a signal has a unique normalized
fourth-order auto-cumulant, the associated eigenvector 1is
orthogonal to all of the other signals’ steering vectors, the
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normalized fourth-order auto-cumulant can be thought of as
acting as a signal discriminator function. In this chapter the
normalized fourth-order auto-cumulant will be defined and
some comments on 1ts use as a discriminator function will be
made.

When multiple signals have the same normalized fourth-
order auto-cumulant at the set of delay lags used, repeated
eigenvalues occur. In order to facilitate repeating the sepa-
ration technique at a new set of time lags where 1deally the
signals will no longer have equal normalized fourth-order
auto-cumulants, care must be taken in selecting the eigen-
vectors of a repeated eigenvalue 1n order to guarantee the
resultant steering vectors remain linearly independent. Cri-
teria are presented below for selecting eigenvectors associ-
ated with a repeated eigenvalue. It will be shown that the

resultant set of new steering vectors remains linearly 1nde-
pendent.

One measure of performance used 1n assessing the blind
source separation algorithm 1s separation power efliciency
(SPE). To achieve an SPE of 1, the inner product of the
separation vector and the associated steering vector must
have a magnitude of 1. To achieve this, the eigenvector,
which forms the basis of the separation vector, must be
normalized since, although 1t 1s co-linear with the steering
vector, 1t does not necessarily have the correct magnitude to
cguarantee that an SPE of 1 can be achieved. Therefore, a
normalization algorithm 1s developed to guarantee that the
SPE 1s maximized. Since there are three definitions for the
spatial fourth-order cumulant matrix, different normaliza-
tion techniques will be required for each.

Conditions of 1dentifiability are presented below that waill
allow an instantancous linear mixture of signals to be
separated. These include the linear independence of the
steering vectors, the statistical independence and non-
Gaussian nature of the source signals, and existence of a set
of time lags where every signal has a distinct normalized
fourth-order auto-cumulant, just to name a few.

Finally, the spatial fourth-order cumulant matrix-pencil
based algorithm 1s presented step by step 1n a flow diagram.
Each step 1s discussed and critical 1ssues, if any, are pre-
sented. Difference that may exist in using the different

spatial fourth-order cumulant matrix definitions in the algo-
rithm will be highlighted.

Normalized Fourth-Order Auto-Cumulant as a Signal
Discriminator

It was previously shown that the generalized eigenvalues
of the spatial fourth-order cumulant matrix-pencil are

éﬁmoxn (216)

A =
/ Cij(fla Ty, T3)

L jel, 2, ..., M.

For separation to occur, a distinct eigenvalue, A, 1s required
for each signal. Therefore, A; acts as a “signal discriminant”.
To 1nvestigate this discriminant and its properties, the nor-
malized fourth-order auto-cumulant of the j”* signal is

defined as

¢y (T1, T2, T3) (217)

J

¢} (0,0,0)

4
er(Tla Ty, T3) =

Clearly the generalized eigenvalue associated with the signal
1s the 1inverse of its normalized fourth-order auto-cumulant.
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1 (213)

A=
Fij(ﬂ,. s, T3)

J

By assumption Al, the signal r{t) is a stationary, non-
Gaussian random process. Further, by assumption A2, the
signal 1s assumed to have a zero mean with power P;, and a
non-zero fourth-order moment. These assumptions ensure
the signals fourth-order cumulant exists and i1s non-zero. A
necessary extension to these assumptions 1s that the set of

time lags, (T, T,, T3) 1S chosen so that the fourth-order
auto-cumulant also exists and 1s non-zero. Thus 1t may be
assumed that the normalized fourth-order auto-cumulant
exists and 1s finite.

Since the signal 1s assumed to be a stationary random
process, 1ts moments are dependent only on the time differ-
ences or lags (T, T,, T3). Therefore, the normalized fourth-
order cumulant 1s a three dimensional function. Thus, for
separating signals there are three independent variables to
work with to ensure the signals have unique normalized
fourth-order auto-cumulants as compared to a second-order
technique that has only one independent variable. This 1s yet
another distinct advantage of the fourth-order cumulant
approach over the second-order spatial correlation based
approach.

The normalized fourth-order auto-cumulant will, 1n
ogeneral, be complex valued. Although the signal’s cumulant
at the set of time lags (0, 0, 0) will have a real value, the
cumulant at time lags (t;, T, T5) will be complex valued.
Thus, the normalized fourth-order auto-cumulant will con-
tain phase information that is a function of (t,, T,, Ts).
Source signal emitter attributes such as phase noise, carrier
frequency, transmit filter response, amplifier response, trans-
mitter clock jitter, propagation channel transfer function,
etc., will contribute to the source signal’s normalized fourth-
order auto-cumulant. From the definition of received source
signal,

r{6)=VPm,(1)

(219)
it 1s clear, employing cumulant property 1, that the normal-
1zed fourth-order auto-cumulant 1s not a function of the
signal’s power.

(220)

4
er(le. T2, T3)

¢ (0,0,0)

4
er(Tla T, T3) =

Cuml|r (D)1t — 1)yt — T2)r; (1 — 73)]

Cum|r;(0)r; (Dr j(Dr5(1)]

P Cumlm (Dm( — 70)m (1 - T)m(t = 73)]

- P5Cum[m ;(Dm5(Dm ;(0m’5(1)]

Cum|mj(0m; (1 — 71 )m (1 — T2)m; (1 — 73)]

Cum|[m ; (Dm0 (Dm ;(Dm’ ()]

Thus the signals are discriminated by having an underly-
ing waveform that has a unique normalized fourth-order
auto-cumulant, not by having different signal powers.

As stated above, the unit power modulated signal from the
i emitter is affected by transmitter unique properties. Since
in practice two transmitters hardly ever produce identical
signals, a source signal will most likely have a unique
fourth-order auto-cumulant function and therefore have a
unique normalized fourth-order auto-cumulant function.
Therefore, 1t 1s expected that a set of time lags will exist
where a group of signals will have unique normalized
fourth-order auto-cumulants and can therefore be separated.
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Sclecting Eigenvectors for Repeated Eigenvalues

When multiple signals® normalized fourth-order auto-
cumulant functions happen to have the same value at the set
of time lags chosen, the problem of repeated eigenvalues
arises. In this situation care must be taken in selecting the
assoclated eigenvectors to ensure that the set of separation
vectors formed from these eigenvectors will transform the
mixing matrix into a new reduced dimension mixing matrix
with full column rank. This guarantees that the separation
algorithm can be repeated to separate the signals associated
with the repeated eigenvalue that are mixed by this new
reduced dimension mixing matrix.

FIG. 6 depicts repeating the separation algorithm for a
single repeated eigenvalue. In FIG. 6, the M by 1 vector
output of the first separation stage, y(t), is partitioned into
two vectors, one with the M-m, elements of y(t) that
correspond to unique eigenvalues, denoted as y((t), and the
other, denoted xzzA{t), with the m elements of y(t) that
correspond to the repeated eigenvalue, u,-, which has mul-
tiplicity N, As 1n the first separation stage, a new 1 by Mz
separation W, 1s sought that will separate the signals
assoclated with the repeated eigenvalue. The new separation
matrix 1s found by repeating the spatial fourth-order matrix-
pencil algorithm at a different set of time lags. However, to
use the algorithm a second time, the conditions for identi-
fiability discussed 1n a following section must hold. One of
these 1s that the mixing matrix has full column rank and
theretore the new reduced dimension, 1M, by 1, mixing
matrix Vg, must have full column rank. Each repeated
cigenvalue would have a similar new mixing matrix and
would have the separation algorithm repeated.

The requirements for selecting the eigenvectors associ-
ated with a repeated eigenvalue so as to guarantee the new
mixing matrix, Vp,, will have full column rank are derived
below. The set of integers that represent the signals associ-
ated with a particular eigenvalue 1s defined as

g=Uetl, 2, . . ., M} =iy ).

Recalling that the eigenvalue A; is equal to the mverse ot the
i”* signals normalized auto-cumulant.

(221)

¢,;(0,0,0) (222)

A=

J

Cr;(T15 T2, 73)

Since there are M signals there will be M eigenvalues,
including repetitions, of which only K are distinct. The
distinct eigenvalues are denoted as u,, k €1,2, ..., K. The
scaled or normalized M associated N by 1 eigenvectors are
the columns of the separation matrix W.

w=Y2, (223)

From equation (215) it can be seen that if the separation
matrix separates all the signals, the resultant matrix product
WV is diagonal. This occurs only if there are M distinct
cigenvalues. As previously described, for a repeated
eigenvalue, the eigenvectors separated the signals associated
with a particular eigenvalue from those not associated with
it; however, the resultant scalar was a linear combination of
the associated signals. Therefore, the matrix product W*V
will have m, rows, mdexed by the set g,, each with m,
non-zero elements in the columns indexed by the set g, for
k=1,2, ..., K. This holds for the M distinct eigenvalues case
as well in which case K=M and n,=1, VK, k=1, and each g,
has only one element in it, k=j, and thus W*V is diagonal.

The new mixing matrix V, consists of the 1, columns of
WV indexed by the set g, with the rows indexed by the
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integers not 1n the set g, removed, 1.e. the rows with all
zeros. Thus Vi, 1s a 1, by 1, matrix that linearly mixes the
1, signals associated with the repeated eigenvalue to form
the M, elements of the vector xz,(t). Since Vg, is to the
second stage separation process as V 1s to the initial sepa-
ration process, 1t must have the same properties as V,
primarily it must have full column rank.

P(Vre) =1 (224)

The condition for selecting w,, j €g, that ensures Vg, has tull
column rank must now be determined.

Since w; 1s a scaled version of the eigenvector €, a
constraint on w; 1s 1n fact a constraint on the selection ot €..
It will now be shown that requiring the eigenvectors €, for
1 €2, to be linearly independent 1s sufficient to guarantee that
V. will have full column rank if V has full column rank.

Separation Vector Formation: Normalizing the Eigenvec-
tors

Although the eigenvectors are orthogonal to all signals
except those with normalized auto-cumulants equal to the
assoclated eigenvalue, the mner product

(225)

does not guarantee that the maximum SPE of 1 will be
achieved. Therefore, the separation vectors are formed by
scaling each eigenvector with a real normalization factor v,
that guarantees a maximum SPE of 1.

W=y (226)
For repeated eigenvalues, the normalization factor will have
a different effect and there 1s no clear advantage to normal-
1zing the eigenvectors associated with repeated eigenvalues
in the first separation stage. Further study of the effect of
repeating the separation algorithm on the achievable SPE is
needed.

From equation (39) it can be seen that the inner product

o

results 1n a “loss” term p; that in general 1s complex. From
equation (63) it can be seen that the SPE is

E=w; Vv, W (228)
Inserting equation (227) in to (228) results in

g=pip;=lp)* (229)
For the SPE to be 1 requires

=1 (230)
and thus a normalization factor y; 1s needed such that

=y e =1 (231)
and therefore

1 (232)

?{;—E-

Calculation of this scale factor for the eigenvectors asso-
cilated with unique eigenvalues 1s dependent on the particu-
lar spatial fourth-order cumulant matrix definition used since
the available variables are different. For spatial fourth-order
cumulant matrix 1 a normalization factor that will guarantee
the SPE will achieve a maximum of 1 can be found and will
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be derived 1n the following sub-section. However, 1t will be
shown for spatial fourth-order cumulant matrices 2 and 3

that the existence of the modified mixing matrix V in their
bilinear forms causes the set of equations available for
solving for the normalization factor to be under specified
and thus using definitions 2 and 3 cause a power loss
preventing the separation from achieving an SPE of 1.

Normalization for Spatial Fourth-Order Cumulant Matrix
1

The only data available to work with 1n normalizing the
eigenvectors are the spatial fourth-order cumulant matrices,
the eigenvalues, and associated eigenvectors. From equation

(225),
(233)

and as previously described, it 1s known, assuming ¢; 1S

associated with a distinct eigenvalue, that
Vie=[0...0¢%0...0]" (234)

with the non-zero element in the j** position. Therefore,
since spatial fourth-order cumulant matrix 1 can be factored

into Hermitian form as
C.*(0, 0, 0)=VC,*0, 0, O)V” (235)

where C (0, 0, 0) is an M by M diagonal matrix, the product

CH(0,0,008; = VCH0, 0, )HVHe, (236)
=vCHO0,0,00{[0 ... 0 & 0 ... 071"}
+ T
=V{[0 ... 0 £} (0,0,00 0 ... 0]}
— E,‘j--i?rj (0, 0, O)v;.
The Euclidian or 1, norm of (236) is then
IC(0, 0, 0321l = [|&c7, (0, 0, Oy | (237)
= |g; Cij(oa 0, 0)‘””;”2-
However, since
238
il = Vv, (235)
=Vl
=1
then
HCI4(05 O: O)éjH2=|EjHer4(U: U: O)l (239)

Further, pre-multiplying the product in equation (236) by the
Hermitian transpose of the j* eigenvector results in the
scalar

27 C1(0,0,0; = jc} (0, 0, 012 v, (240)
=&le jcij(o, 0, 0)

e 2.4
= |&}] er(D, 0, 0).

Taking the ratio of the absolute value of (240) to (239)
produces the scalar
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(241)

21 4
&

rj (03 05 0)‘

2 c}0, 0, 0)e))
IC4(0, 0, 02l

= |g}].

Thus the unknown denominator in (232) has been solved for
and therefore the normalization factor, when using spatial
fourth-order cumulant matrix 1, 1s

I IGO0, 0, 02l (242)

’J/- = =
A 27 C4(0, 0, 02,

Normalization for Spatial Fourth-Order Cumulant Matri-
ces 2 and 3

Spatial fourth-order cumulant matrix 2 and 3 are not
factorable into Hermitian form but instead factor into a
bi-linecar form as shown previously as

CJ:4I(TI: TE: TS)=ffcr4(Tln TE: TS)W (243)

and

CA" (1 Toy T)=V*C (15, T, T)VF (244)
respectively. From the results i chapter 5 1t 1s clear that
pencils formed using spatial fourth-order cumulant matrices
2 and 3 will have the same eigenvalues with the associated
eigenvectors of spatial fourth-order cumulant matrix-pencil
3 equal to the conjugate of the eigenvectors of spatial
fourth-order cumulant matrix-pencil 2. Thus, since the nor-

malization factor 1s real, if 1t exists 1t would be the same for
both definitions.

Since spatial fourth-order cumulant matrices 2 and 3 are
not factorable into Hermitian form, the modified mixing
matrix has to be dealt with 1n attempting to estimate the
normalization factor given in equation (232). Unfortunately,
in general

(245)

Further, even for distinct eigenvalues, the eigenvector, spe-
cifically the right eigenvector €;, 1s in general no longer

orthogonal to all modified steering vectors except {}f and 1t
1s not guaranteed that the modified steering vectors have a
Euclidian norm of 1, that 1s in general

v/l (246)
Thus the properties that spatial fourth-order cumulant matrix

1 possessed that allowed for the estimation of |e;| are not
shared by spatial fourth-order cumulant matrices 2 and 3.

Solving for \ej\ grven only spatial fourth-order cumulant
matrix 2 or 3, the generalized eigenvalues of the associated
pencil, and their associated left, af, and right, €, eigenvectors
1s under specified. Since spatial fourth-order cumulant
matrix 1 can be factored into Hermitian form, the left and
right eigenvectors of spatial fourth-order cumulant matrix-
pencil 1 are related by a Hermitian transformation, that 1s if
¢; 1S a right elgenvector of spatial fourth-order cumulant
matrlx-pencﬂ 1 then e 1s a left eigenvector. Thus the
product € e C 10, 0, O)e has only two unknowns, one being
\e\ Slmﬂarly, |C.*0, 0, 0)é]|, has the same two unknowns
since ||v{,=1 and therefore ( 1| can be solved for. However,
for spatial fourth-order cumulant matrix 2, and similarly for

3,
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[ ©. 0, 00)]], =lees, (0., 0, 005 (247)
~j||2
and
d:c¥(0,0,00; = e3¢} 0, 0. 0)d;¥; (248)
_SJ(SJCF (0 0 0)

where d 1s the 1 by N left eigenvector associated with the
i 51gnal and

5=d.v. (249)

Thus there are two equations and four unknowns.
Attempting to establish four equations by using the spatial
fourth-order cumulant matrix 2 at delay lags (t;, T,, T3)
results in now having four equations and five unknowns.
Thus, for spatial fourth-order cumulant matrix 2, and simi-
larly for 3, solving for the normalization factor results 1n an
under specified problem that cannot be solve. This is yet
another advantage of definition 1, since a normalization
factor that guarantees a maximum SPE of 1 can be solved
for.

Conditions for Identifiability

Identifiability deals with the ability of the blind source
separation algorithm to uniquely associate a separation
vector with an arriving source signal and thus separate it out
of the linear mixture by suppressing the other signals. In
order for the proposed blind source separation algorithm to
perform the separation certain conditions must be met. Some
have already been presented as signal and noise assumptions
and are restated here as conditions that are 1mposed for the
spatial fourth-order cumulant matrix-pencil based blind
source separation algorithm to achieve the separation of the
source signals. The fewer conditions for identifiability
required the more powerful the algorithm will be 1n the sense
of handling a wider variety of source separation problems.
Five conditions for identifiability, CI1 through CI5, are
ogrven below,

CI1: The mixing matrix, V, has full column rank. This
requires the number of sources be less than or equal to the
number of sensors, 1.e. M=N, and that the signal steering,

vectors be linearly independent.

CI2: The normalized fourth-order auto-cumulant, ¢, (1:1, T,
t,) 1s different for each signal. The algonthm may be
repeated at different sets of time lags (t,, T,, T5) In a
second separation stage operating only on the signals 1n
the first stage that had i1dentical normalized fourth-order
auto-cumulants.

CI3: The M source signals 1lluminating the array are statis-
tically independent non-Gaussian stationary random pro-
cesses and are stationary to order four over the spatial
fourth-order cumulant matrix estimation period.

CI4: The noise processes are stationary Gaussian random
processes. They need not be spatially or temporally white.
Stationarity 1s required only over the estimation period of
the spatial fourth-order cumulant matrix.

CI5: For spatial fourth-order cumulant matrix definitions 2
and 3, the Hadamard product

V=VOVOV (250)

preserves the rank of the mixing matrix V, 1.e. the modified
mixing matrix has full column rank. This condition 1s not
required when using spatial fourth-order cumulant matrix
definition 1.
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Separation Matrix Formation Algorithm

FIG. 7 and FIG. 8 are flow diagrams of a process for
performing the blind source separation using the spatial
fourth-order cumulant matrix-pencil 1n accordance with an
embodiment of the present invention. The algorithm
requires as inputs the set of time lags (t,, T,, T5) where (T,
T, T41)=(0, 0, 0). Delay lag values, t,, T,, T, are provided at
step 61 and senor data values, x(t), are provided at step 63.
[t 1s recommended, that either t,=t, or T,=0 1 order to
preserve phase information. This will reduce the occurrence
of repeated eigenvalues and thus reduce the number of times
the separation has to be repeated.

At step 60, the estimation of the spatial fourth-order
cumulant matrix at lags (0, 0, 0) and (t,, T,, T,) 1s performed
matrix element by matrix element. Since a cumulant cannot
be estimated directly from the data, all moments up to order
four must be estimated. The estimation can be done either 1n
a real time manner as the array samples the propagating
wavefields and generates the sensor output data x(t) or after
the entire data set required to estimate the cumulants has
been captured.

After the spatial fourth-order cumulant matrices C_*(0, 0,
0) and C *(t,, T, T;) have been estimated, the generalized
cigen analysis of the matrix-pencil P,(A, T) is performed at
step 62 to determine its finite spectra, A(C.*(0, 0, 0), C. (4,
T, T3)). At step 64, the number, K, of distinct finite eigen-
values and multiplicity of each distinct eigenvalue are
determined. The spectra will have M finite values, counting
multiplicities, each corresponding to the normalized fourth-
order auto-cumulant of a signal. Of the M eigenvalues there
will be K distinct eigenvalues, u,, kel,2, . . ., K, each with
a multiplicity n,. For each distinct eigenvalue v, linearly
independent eigenvectors are calculated. An index, k, 1s set
to zero at step 66. The 1ndex, k, 1s used to ensure that each
distinct eigenvalue 1s addressed. At step 68, the distinct
eigenvalue mdex, k, 1s compared to the number of distinct
finite eigenvalues, K. Given that at least one distinct eigen-
value exists, K will not be equal to zero. Thus, on the first
iteration, k will be less than K, and the process will proceed
to step 72, as indicated by the circled letter “A” 1n FIG. 7 and
FIG. 8. At step 72, it 1s determined if the multiplicity, 1., 1s
greater than 1. If the multiplicity, m,, 1s not greater than 1,
the process proceeds to step 74. At step 74, an eigenvector
¢;, 1s calculated for the eigenvalue for the k” distinct
cigenvalue (A =u,). For each A =y, with a multiplicity of one,
a normalization factor vy, i1s calculated at step 76. The
separation vector 1s formed as w=y& at step 78. The
separation vector, W, 1s utilized (appended) to form the
separation Matrix, W, at step 80, wherein the separation
vectors are (by definition) the columns of the separation
matrix, W. After the separation vector, W, is appended to the
separation matrix, W, the index, k, 1s incremented at step 82.
The process then proceeds to step 68, as indicated by the
circled letter “B” 1n FIG. 7 and FIG. 8. At step 68, k 1s
compared with K. If k 1s greater than K, then the separation
matrix W 1s provided and available for subsequent process-
ing at step 70. If k 1s not greater than K (step 68) then the
process proceeds to step 72, as indicated by the circled letter
“A” 1n FIG. 7 and FIG. 8. At step 72, 1t 1s determined if the
multiplicity, 1,, 1s greater than 1. If the multiplicity, 1, 1s
orcater than 1, the process proceeds to step 84. At step 84,
N, linearly independent ecigenvectors ecigenvector €, are
calculated for the distinct eigenvalues (A.=u,). For each
repeated eigenvalue the 1, separation vectors are set equal
to 1its associated eigenvectors as w;=¢C, at step 86. The
separation matrix, W, 1s formed at step 80 by appending the
separation vectors W.. The index, K, is incremented again at
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step 82, and the process 1s repeated until all distinct e1gen-
values are addressed (k is greater than K at step 68). At step
68, if k 1s greater than K, the separation matrix, W, 1s
provided and available for subsequent processing at step 70.
At step 71, the separation matrix, W, 1s multiplied by the
input signal x(t) to perform the separation. More specifically,
a matrix representation of the input signal x(t) is multiplied
by the Hermitian transpose of the separation matrix, W, in
accordance with the following equation.

y(O)=Wx (1) (251)

Hybrid Separation Matrix Weights

The BSS system described above uses adaptive separation
welghts (adaptive weights). The method and system for
performing BSS can also be implemented with hybrid
adaptive separation weights (hybrid weights) the minimize
the mean-squared error (MSE) due to interference-plus-
noise. The minimum MSE (MMSE) hybrid weights are
computed from the zero-lag spatial correlation matrix and
from the generalized eigenvectors of the SFOCMP. Each
eigenvector 18 used to estimate a corresponding source
steering vector and source power. The zero-lag spatial
correlation matrix, source steering vector, and source power
estimates are used to form the estimated MMSE weight
vector based on the interference-plus-noise spatial correla-
fion matrix.

FIG. 9 1s a representative diagram of the BSS system
described previously and 1s presented to illuminate the
differences between adaptive weights and hybrid weights. In
FIG. 9, each source separation vector (i.e. adapted weight
vector) corresponds to a normalized eigenvector of either the
spatial fourth order cumulant matrix-pencil, or spatial cor-
relation matrix pencil. Since each eigenvector 1s orthogonal
to all the other source steering vectors, these adaptive
welghts are designed to maximize the signal-to-interference
ratio, or equivalently minimize the interference-to-signal
ratio.

Block 901 outputs the array data x(t) an estimate of the
spatial 4”-order Cumulant or Correlation matrix pair is
made 1n block 902 the result of which undergoes generalized
eigenvalue decomposition 1n 903. The SFOCMP eigenvec-
tors are normalized 1n block 904 forming the separation
matrix which 1s applied to the array output data as shown in
block 905. While the BSS embodiment described above and
in FIG. 9 estimates steering vectors as shown 1n block 906,
the estimates are not used 1n the formation of the separation
matrix W.

While normalized eigenvectors can be used effectively to
suppress 1nterferers, these adaptive weights are not con-
strained to limit errors 1n the output waveforms due to the
additive Gaussian noise. A SFOCM based matrix-pencil
approach with Hybrid adaptive weights uses both 2" order
and 4™ order statistic to form the adapted weights where the
welght vectors are designed to minimized the mean-squared
error due to both the imterference and noise. This hybrid
method uses the estimated zero-lag Spatlal Correlatlon
matrix, R, the estimated steering vector of the j*”* source, v,
and the estlmated source power P; to form the mterference-
plus-noise correlation matrix K. and thereby the j** adapted
welght vector w

hyb
Since the i eigenvector, e; satisfies equation (252)
Vi%e=[0...0,¢%0...0] where e=¢"v, (252)

+is proportional to the product C,(0)e;=VC,(0)V*”e,=v flcA
(O)e *) and the steering vector can be estimated by normal-
1zation.
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An estimate of the j* source power can be derived from
the unconstrained MMSE weight vector Wf=1%‘1vj. In terms

of R, this can be rewritten as R w;-v =v.P v ~“w. Using the
of estimates of w; and ¥, the source power estimate becomes:

p j=‘ @Mj-f—“}\l/ | {jowjl

With the steering vector estimate and source power
estimate, the mterference-plus-noise correlation matrix esti-
mate for the i source is simply Kj.=ﬁx—ﬁj.f’j.{”fhﬁ Thus the
hybrid MMSE weight vector estimate for the j”* source is
grven by;

This hybrid MMSE weight compared to the adaptive
welght vector requires several additional steps including the
inversion of the N interference-plus-noise correlation matri-
ces. The hybrid MMSE weight vector trades off interference
suppression for improved robustness to additive Gaussian
noise, which become evermore important as signals” SNR
become lower. In terms of adapted beam patterns, the
normalized eigenvector weights place nulls 1n the different
interference directions and maintains a unity gain in the
desired source direction. The hybrid weights on the other
hand, form lesser nulls in the interferes’ directions and
maintains a unity gain in the desired source direction, while
additionally limiting the average side lobe levels 1n non-
source directions.

Therefore, to optimize the signal-to-interference-plus-
noise ratio, minimum mean-squared error adaptive separa-
tion weight vectors (hybrid weights) can be found from the
matrix-pencil based steering vector estimates, spatial auto-
correlation Matrix and estimated interference-plus-noise
correlation matrices. FIG. 10 shows an illustration of the
system described above for generating hybrid separation
welghts. The differences from FIG. 9 are shaded to highlight
the differences.

An array output 1001 is used to estimate a spatial 4 order
Cumulant 1002 on which GEVD 1s performed 1n block
1003. The output of 1003 1s used as described above to
estimate steering vectors 1n block and estimate the
interference-plus-noise correlation Matrix, along with a esti-
mate of the spatial correlation Matrix 1mn block 1004. The
spatial correlation Matrix also uses the Array Output for
estimation. The hybrid separation weight vectors are gener-
ated 1n 0000 which forms the separation matrix W which 1s
applied to the Array output to produce the signal y(t) in the
same manner as adaptive weights are used.

To 1llustrate the separation performance using the hybrid
welghts, average ISR and SINR performance over 25 Monte
Carlo trials versus SNR for two GMSK sources and a six
sensor array (random mixing matrix and isotropic white
noise) using adaptive weights (SFCM EigVEC and hybrid
MMSE weights (SFCM Hybrid and R1,R2-MMSE) are
shown as FIG. 11a and 11b.

As seen 1n FIG. 11a the normalized eigenvector weights
provide marginally better suppression of the interference
signals than do the Hybrid weights. However as shown 1n
FIG. 11b, the normalized eigenvector weighs provide no
suppression of additive noise whereas the hybrid MMSE
welghts show significant suppression of both interference
and noise. The hybrid MMSE weights also provide
improved ISR at lower source mput SNR.

These results are repeated 1n FIGS. 124 and 12b, where
average ISR and SINR performance respectively over 25
Monte Carlo trials versus SNR for six GMSK sources and a
six sensor array (random mixing matrix and non-isotropic
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spatially and temporally correlated Gaussian noise) is shown
for both the prior art weights and the hybrid MMSE weights.

Therefore, Matrix-pencil based hybrid MMSE adaptive
array welghts are uniquely applicable to many scenarios
where both co-channel interference and Gaussian noise must
be suppressed such as SIGINT Mapping Processors, space-
based radar adaptive suppression of clutter and one or more
jammers and suppression of direct-path source signals.

A BSS technique as described herein may be embodied 1n
the form of computer-implemented processes and system for
practicing those processes. A BSS technique as described
herein may also be embodied 1n the form of computer

program code embodied 1n tangible media, such as floppy
diskettes, read only memories (ROMs), CD-ROMs, hard
drives, high density disk, or any other computer-readable
storage medium, wherein, when the computer program code
1s loaded i1nto and executed by a computer, the computer
becomes a system for practicing the invention. The BSS
technique as described herein may also be embodied 1n the
form of computer program code, for example, whether
stored 1n a storage medium, loaded 1nto and/or executed by
a computer, or transmitted over some transmission medium,
such as over the electrical wiring or cabling, through fiber
optics, or via electromagnetic radiation, wherein, when the
computer program code 1s loaded into and executed by a
computer, the computer becomes a system for practicing the
invention. When i1mplemented on a general-purpose
processor, the computer program code segments configure
the processor to create specific logic circuits.

A blind source separation (BSS) technique in accordance
with the present invention provides a robust higher-order
cumulant based principle component blind source separation
technique that performs well at low signal-to-noise ratios
with the potential of performing well 1n the presence of
temporally and spatially correlated noise. Furthermore, a
new definition of a spatial fourth-order cumulant matrix
suited to blind source separation with non-equal gain, direc-
tional sensors 1s provided, the definition of a spatial fourth-
order cumulant matrix-pencil using temporal information 1s
provided, the concept of the separation power efficiency as
a measure of the algorithm’s performance 1s provided, and
the concept of wide sense equivalence between matrix-
pencils are also provided.

Applications of the BSS technique 1n accordance with the
present 1nvention include spectral monitoring, be 1t for
signal 1ntelligence or other applications such as radio
astronomy, where Gaussian random noise processes domi-
nate the received signals out of an array. This fourth-order
array signal processing BSS technique in accordance with
the present invention provides the ability to exploit spatial
information to separate co-channel emitters for detection,
classification, and idenftification. This 1s particularly appli-
cable to detecting signals designed for a low probability of
detection (LPD) or low probability of intercept (LPI) which
may use ambient background electromagnetic radiation and
known co-channel emitters as a means of concealment. The
spatial fourth-order cumulant matrix-pencil based blind
source separation technique 1n accordance with the present
invention provides the capability to blindly separate
unknown co-channel emitters that may be near or below the
noise floor of the individual sensors.

Although 1llustrated and described herein with reference
to certain specific embodiments, the BSS technique as
described herein 1s nevertheless not intended to be limited to
the details shown. Rather, various modifications may be
made 1n the details within the scope and range of equivalents
of the claims and without departing from the spirit of the
invention.
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What 1s claimed 1s:

1. A method for separating M signals provided by M
sources and received by an array comprising N elements,
salid method comprising;:

generating a hybrid separation matrix as a function of:
time differences between receipt of said M signals by
said N elements;
a spaftial fourth order cumulant matrix pencil;
a spaftial correlation matrix; and,
steering vectors of said M signals, and,

multiplying said hybrid separation matrix by a time series
matrix representation of said M signals.
2. A method 1n accordance with claim 1 wheremn the
hybrid separation matrix is 1n accordance with the following
equation:

ey _AHA—]_A—]_A—]_"“.
Wf,hyb—h"f K; 1—}-| K, v

wherein,

v; 1s the steering vector of the i”* signal; and,

K. 1s the noise spatial covariance matrix of the i signal.
3. A method 1 accordance with claim 1 wherein said

spatial fourth order cumulant matrix pencil i1s a function of
a spaftial fourth order cumulant matrix.

4. A method 1n accordance claim 3, wherein said spatial
fourth order cumulant matrix i1s 1n accordance with the

following equation:

N
Clr1, T2, T3) = Z Cum[x} (r — 71)x;(t — T2)x(0x" (£ — 13)],
i—1

wherein

C.*(t4, T, T4) is said spatial fourth order cumulant matrix
having a first time lag, T,, a second time lag, T, and a
third time lag, t,, each time lag being indicative of a
time delay from one of said M sources to one of said N
clements;

N 1s 1ndicative of a number of elements 1n said array;

Cum [x;*(t—t,) x(t-7,) x(t) x“(t-T5)] is a cumulant
operator on arguments [x*(t-t,) x{t—t,) x(t) x"(t-
T3));

t 1s a variable representing time;

X;*(t—T,) represents a complex conjugate of one of said M
signals from an i source at time t-T,;

x(t-T,) represents one of said M signals from an i”
source at time t—t;;

x(t) is a vector representation of said M signals; and

x"(t-7,) represents the Hermitian transpose of x(t—1;).

5. A method 1 accordance with claim 1 wherein said step
of generating said hybrid separation matrix comprises per-
forming a generalized eigenvalue analysis of said spatial
fourth order cumulant matrix pencil.

6. A method 1 accordance with claim 1 wherein M=N.

7. A method 1n accordance with claim 1 wherein M<N.

8. A computer readable medium encoded with a computer
program code for directing a processor to separate M signals
provided by a Msources and received by an array compris-
ing N elements, said program code comprising:

a first code segment for causing said processor to generate
a hybrid separation matrix as a function of:
time differences between receipt of said M signals by
salid N elements;
a spatial fourth order cumulant matrix pencil;
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a spatial correlation matrix; and,
steering vectors of said plurality of signals, and,

a second code segment for causing said processor to
multiply said separation matrix by a time series matrix
representation of said M signals.

9. A computer readable 1n accordance with claim 8

wherein the hybrid separation matrix 1s 1n accordance with
the following equation:

- A HP—1g |18 —1g, .
W, hop=|V; K. V.l K. Ve

wherein,
v; 1s the steering vector of the i”* signal;

K, 1s the noise spatial covariance matrix of the i signal.
10. A computer readable 1in accordance with claim 8
whereln

said spatial fourth order cumulant matrix pencil 15 a
function of a spatial fourth order cumulant matrix being
a summation of steering vector outer products scaled by
an 1ndividual source signal’s fourth order cumulant;
and,

said steering vector 1s indicative of respective phase
delays between ones of said N elements.
11. A computer readable medium in accordance claim 10
wherein said spatial fourth order cumulant matrix 1s 1n
accordance with the following equation:

N
Cliry, 12, 13) = Z Cum[x; (t — T1)x; (t — T2)x(Dx" (t = 73))],
=1

wherein:

C.*(t4, T, T5) is said spatial fourth order cumulant matrix
having a first time lag, T, a second time lag, T, and a
third time lag, ©,, each time lag being indicative of a
time delay from one of said M sources to one of said N
elements;

N 1s 1ndicative of a number of elements 1n said array;
Cum [x*(t-t;) x,(t-t,) x(t) x"“(t—t5)] is a cumulant

operator on arguments X,*(t—T,) x,(t-7,) x(t) x”(t-15);
t 1s a variable representing time;

x.*(t—T1,) represents a complex conjugate of one of said M

signals from an i” source at time t—T;;

x(t-T,) represents one of said M signals from an i”

source at time t—t,;
x(t) is a vector representation of said M signals; and

x“(t-t.) represents the Hermitian transpose of x(t—T.,).
12. A computer readable medium 1n accordance with
claim 8, said program code further comprising;:

a third code segment for causing said processor to per-
form a generalized eigenvalue analysis of said spatial
fourth order cumulant matrix pencil.

13. A computer readable medium 1n accordance with

claim 8 wherein M=N.

14. A computer readable medium in accordance with

claim 8 wherein M<N.

15. A system for separating M signals provided by M

sources, sald system comprising:

a recerver for receiving said M signals and for providing
received signals therefrom; and

a signal processor for receiving said received signals,
generating a hybrid separation matrix, and multiplying
said separation matrix by a time series matrix repre-
sentation of said received signals, wherein:
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said hybrid separation matrix 1s a function of fime
differences between receipt of
said M signals by said receiver, a spatial correlation
matrix; steering vectors of
saidd M signals and a spatial fourth order cumulant
matrix pencil.
16. A system 1n accordance with claim 15, wherein the
hybrid separation matrix 1s 1n accordance with the following
equation:

- e T —1a -1 —14, .
W= |90

wherein,
v; 18 the steering vector of the i signal;

K, 1s the noise spatial covariance matrix of the i signal.
17. A system 1n accordance with claim 15 wherein said

receiver comprises N elements configured to form an array.
18. A system 1n accordance with claim 15 wherein

said spatial fourth order cumulant matrix pencil 1s a
function of a spatial fourth order cumulant matrix being
a summation of steering vector outer products scaled by
an 1ndividual source signal’s fourth order cumulant;
and,

said steering vector 1s indicative of respective phase
delays between ones of said N elements.
19. A system 1n accordance claim 18 wherein said spatial

fourth order cumulant matrix 1s 1n accordance with the
following equation:

N
Ci(r1, 72, 73) = ) Cumlx; (1 = 7)x;(t - T)x(0x" (1 - 7)),
=1

wherein:

C.*(t,, T,, T,) is said spatial fourth order cumulant matrix
having a first time lag, T,, a second time lag, T, and a
third time lag, t,, each time lag being indicative of a
time delay from one of said M sources to one of said N
clements;

N 1s indicative of a number of a number of elements 1n
said array;

Cum [x;*(t—7t,) x{(t—t,) x(t) x7(t-7t3)] is a cumulant
operator on arguments X, *(t-T,) x(t-1,) x(t) x“(t-1,);

10

15

20

25

30

35

40

62

t 1s a variable representing time;

X;*(t—T,) represents a complex conjugate of one of said M
signals from an i source at time t—T,;

x(t-T,) represents one of said M signals from an i”
source at time t—t,;

x(t) 1s a vector representation of said M signals; and

x“(t-t,) represents the Hermitian transpose of x(t—T.,).
20. A system 1 accordance with claim 17 wherein M=N.
21. A system 1n accordance with claim 17 wherein M<N.
22. In a method for recovering low SNR signals 1n an
multi-signal and noise environment with a multi-sensor
array wherein a separation matrix 1s applied to the multi-
sensor array data, the improvement of forming the separa-
flon matrix with hybrid minimum mean squared error
welghts, wherein said weights are generated as a function of

a spatial correlation matrix; steering vectors of said multiple
signals and a spaftial fourth order cumulant matrix pencil.

23. A method 1n accordance with claim 22 wherein the
number of said multiple signals 1s equal to the number of
said multiple sensors 1n said array.

24. A method 1n accordance with claim 22 wherein the
number of said multiple signals 1s less than the number of
said multiple sensors 1n said array.

25. A method for recovering an unknown signal from a
composite signal containing the unknown signal and at least
one interferer signal and noise, said method comprising the
step of generating a separation matrix to suppress the at least
one 1nterferer signal and the noise, wherein the separation
matrix 15 a function of the spatial correlation matrix of the
unknown signal, a steering vector, and a spatial fourth order
cumulant matrix pencil of the unknown signal and the at
least one interferer signal.

26. A method 1n accordance with claim 25 wherein said
composite signal comprises M signals and 1s received on an
N element array.

27. A method 1n accordance with claim 26 wherein M=N.

28. A method 1n accordance with claim 26 wherein M<N.
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